Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 2, Pages 246–261
DOI: https://doi.org/10.4213/mzm7706
(Mi mzm7706)
 

This article is cited in 17 scientific papers (total in 17 papers)

Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture

A. A. Papin, I. G. Akhmerova

Altai State University
References:
Abstract: We prove the local solvability of the initial boundary-value problem for the system of equations of one-dimensional nonstationary motion of a heat-conducting two-phase mixture (gas plus solid particles). For the case in which the real densities of the phases are constant, we establish the solvability “in the large” with respect to time.
Keywords: motion of a heat-conducting two-phase mixture, quasilinear system of equations, viscous gas, Lebesgue space, Hölder space, Lagrangian variable, Cauchy problem, parabolic equation, Tikhonov–Schauder theorem, incompressible medium.
Received: 17.02.2009
Revised: 14.06.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 2, Pages 230–243
DOI: https://doi.org/10.1134/S0001434610010293
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: A. A. Papin, I. G. Akhmerova, “Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture”, Mat. Zametki, 87:2 (2010), 246–261; Math. Notes, 87:2 (2010), 230–243
Citation in format AMSBIB
\Bibitem{PapAkh10}
\by A.~A.~Papin, I.~G.~Akhmerova
\paper Solvability of the System of Equations of One-Dimensional Motion of a Heat-Conducting Two-Phase Mixture
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 246--261
\mathnet{http://mi.mathnet.ru/mzm7706}
\crossref{https://doi.org/10.4213/mzm7706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2731475}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 230--243
\crossref{https://doi.org/10.1134/S0001434610010293}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949971675}
Linking options:
  • https://www.mathnet.ru/eng/mzm7706
  • https://doi.org/10.4213/mzm7706
  • https://www.mathnet.ru/eng/mzm/v87/i2/p246
  • This publication is cited in the following 17 articles:
    1. A. E. Mamontov, D. A. Prokudin, “Asymptotic Behavior of the Solution to the Initial-boundary Value Problem for One-dimensional Motions of a Barotropic Compressible Viscous Multifluid”, Lobachevskii J Math, 45:4 (2024), 1463  crossref
    2. D.A. Prokudin, “Stabilization of the Solution to the Initial-Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media”, Izvestiya AltGU, 2023, no. 4(132), 73  crossref
    3. Dmitriy Prokudin, “On the Stabilization of the Solution to the Initial Boundary Value Problem for One-Dimensional Isothermal Equations of Viscous Compressible Multicomponent Media Dynamics”, Mathematics, 11:14 (2023), 3065  crossref
    4. I.G. Akhmerova, A.V. Ustyuzhanova, “Numerical solution of a boundary value problem for one-dimensional motion of a granular matter”, Yuzhno-Sibirskii nauchnyi vestnik, 2023, no. 4(50), 72  crossref
    5. I.G. Akhmerova, A.S. Pravdivtsev, “Local Solvability of a Boundary Value Problem for One-Dimensional Motion of a Granular Matter”, Izvestiya AltGU, 2023, no. 4(132), 59  crossref
    6. I.G. Akhmerova, “Local Solvability of the Flow Problem for the Equations of Motion of Two Interpene Crating Fluids”, Izvestiya AltGU, 2022, no. 1(123), 73  crossref
    7. M. A. Tokareva, A. A. Papin, “On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium”, Sib. elektron. matem. izv., 18:2 (2021), 1397–1422  mathnet  crossref
    8. Margarita Tokareva, Alexander Papin, S. Bourekkadi, J. Abouchabaka, O. Omari, K. Slimani, “On the existence of global solution of the system of equations of liquid movement in porous medium”, E3S Web Conf., 234 (2021), 00095  crossref
    9. Miglena N. Koleva, Lubin G. Vulkov, Studies in Computational Intelligence, 961, Advanced Computing in Industrial Mathematics, 2021, 222  crossref
    10. Alexander A. Papin, Margarita A. Tokareva, Rudolf A. Virts, “Filtration of liquid in a non-isothermal viscous porous medium”, Zhurn. SFU. Ser. Matem. i fiz., 13:6 (2020), 763–773  mathnet  crossref
    11. Koleva M.N., Vulkov L.G., “Numerical Analysis of One Dimensional Motion of Magma Without Mass Forces”, J. Comput. Appl. Math., 366 (2020), UNSP 112338  crossref  mathscinet  isi
    12. M. A. Tokareva, A. A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, J. Appl. Industr. Math., 13:2 (2019), 350–362  mathnet  crossref  crossref  elib
    13. Alexander A. Papin, Margarita A. Tokareva, “On local solvability of the system of the equations of one dimensional motion of magma”, Zhurn. SFU. Ser. Matem. i fiz., 10:3 (2017), 385–395  mathnet  crossref
    14. M A Tokareva, “Solvability of initial boundary value problem for the equations of filtration in poroelastic media”, J. Phys.: Conf. Ser., 722 (2016), 012037  crossref
    15. I. G. Akhmerova, A. A. Papin, “Solvability of the Boundary-Value Problem for Equations of One-Dimensional Motion of a Two-Phase Mixture”, Math. Notes, 96:2 (2014), 166–179  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. Irina G. Akhmerova, “Razreshimost kraevoi zadachi dlya uravnenii odnomernogo dvizheniya dvukhfaznoi smesi”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 25–35  mathnet
    17. Papin A.A., Tokareva M.A., “Zadacha o dvizhenii szhimaemoi zhidkosti v deformiruemoi poristoi srede”, Izvestiya Altaiskogo gosudarstvennogo universiteta, 2011, no. 1-2, 36–43  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:581
    Full-text PDF :241
    References:103
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025