Abstract:
The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for
d35=supΦ⊂R3,diamΦ=1inf{x⩾0:Φ=Φ1∪Φ2∪⋯∪Φ5,diamΦi⩽x}
is given, which improves the previous bound obtained by Lassak in 1982.
Keywords:
Borsuk's problem, partition of 3D sets, diameter of a set, Lassak's bound, Gale's conjecture, Jung's ball, Helly's theorem, isometry.
Citation:
A. B. Kupavskii, A. M. Raigorodskii, “Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter”, Mat. Zametki, 87:2 (2010), 233–245; Math. Notes, 87:2 (2010), 218–229
\Bibitem{KupRai10}
\by A.~B.~Kupavskii, A.~M.~Raigorodskii
\paper Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 233--245
\mathnet{http://mi.mathnet.ru/mzm5188}
\crossref{https://doi.org/10.4213/mzm5188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2731474}
\zmath{https://zbmath.org/?q=an:05791040}
\elib{https://elibrary.ru/item.asp?id=15313395}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 218--229
\crossref{https://doi.org/10.1134/S0001434610010281}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950016199}
Linking options:
https://www.mathnet.ru/eng/mzm5188
https://doi.org/10.4213/mzm5188
https://www.mathnet.ru/eng/mzm/v87/i2/p233
This publication is cited in the following 6 articles:
Arthur Bikeev, “Borsuk's problem, Boltyanski's illumination
problem, and circumradius”, Moscow J. Comb. Number Th., 12:3 (2023), 223
V. A. Voronov, A. D. Tolmachev, D. S. Protasov, A. M. Neopryatnaya, Communications in Computer and Information Science, 1881, Mathematical Optimization Theory and Operations Research: Recent Trends, 2023, 391
Lian Ya., Wu S., “Partition Bounded Sets Into Sets Having Smaller Diameters”, Results Math., 76:3 (2021), 116
V. P. Filimonov, “Covering sets in Rm”, Sb. Math., 205:8 (2014), 1160–1200