Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 2, Pages 233–245
DOI: https://doi.org/10.4213/mzm5188
(Mi mzm5188)
 

This article is cited in 6 scientific papers (total in 6 papers)

Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter

A. B. Kupavskii, A. M. Raigorodskii

M. V. Lomonosov Moscow State University
Full-text PDF (555 kB) Citations (6)
References:
Abstract: The classical Borsuk problem on partitioning sets into pieces of smaller diameter is considered. A new upper bound for
$$ d_5^3=\sup_{\Phi\subset\mathbb R^3,\operatorname{diam}\Phi=1}\inf\{x\ge0:\Phi=\Phi_1\cup\Phi_2\cup\dots\cup\Phi_5,\operatorname{diam}\Phi_i\le x\} $$
is given, which improves the previous bound obtained by Lassak in 1982.
Keywords: Borsuk's problem, partition of 3D sets, diameter of a set, Lassak's bound, Gale's conjecture, Jung's ball, Helly's theorem, isometry.
Received: 04.06.2008
English version:
Mathematical Notes, 2010, Volume 87, Issue 2, Pages 218–229
DOI: https://doi.org/10.1134/S0001434610010281
Bibliographic databases:
UDC: 514.17
Language: Russian
Citation: A. B. Kupavskii, A. M. Raigorodskii, “Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter”, Mat. Zametki, 87:2 (2010), 233–245; Math. Notes, 87:2 (2010), 218–229
Citation in format AMSBIB
\Bibitem{KupRai10}
\by A.~B.~Kupavskii, A.~M.~Raigorodskii
\paper Partition of Three-Dimensional Sets into Five Parts of Smaller Diameter
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 2
\pages 233--245
\mathnet{http://mi.mathnet.ru/mzm5188}
\crossref{https://doi.org/10.4213/mzm5188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2731474}
\zmath{https://zbmath.org/?q=an:05791040}
\elib{https://elibrary.ru/item.asp?id=15313395}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 2
\pages 218--229
\crossref{https://doi.org/10.1134/S0001434610010281}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276064800028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950016199}
Linking options:
  • https://www.mathnet.ru/eng/mzm5188
  • https://doi.org/10.4213/mzm5188
  • https://www.mathnet.ru/eng/mzm/v87/i2/p233
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:619
    Full-text PDF :243
    References:80
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024