Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 6, Pages 831–843 (Mi mzm7695)  

This article is cited in 17 scientific papers (total in 17 papers)

An inverse scattering problem for a perturbed Hill's operator

N. E. Firsova

Leningrad State University
Abstract: We consider the inverse scattering problem for the operator L=d2/dx2+p(x)+q(x), xR1. The perturbation potential q is expressed in terms of the periodic potential p and the scattering data. We also obtain identities for the eigenfunctions of the unperturbed Hill's operator L0=d2/dx2+p(x).
Received: 19.11.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 6, Pages 1085–1091
DOI: https://doi.org/10.1007/BF01099986
Bibliographic databases:
UDC: 517
Language: Russian
Citation: N. E. Firsova, “An inverse scattering problem for a perturbed Hill's operator”, Mat. Zametki, 18:6 (1975), 831–843; Math. Notes, 18:6 (1975), 1085–1091
Citation in format AMSBIB
\Bibitem{Fir75}
\by N.~E.~Firsova
\paper An inverse scattering problem for a~perturbed Hill's operator
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 6
\pages 831--843
\mathnet{http://mi.mathnet.ru/mzm7695}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=407364}
\zmath{https://zbmath.org/?q=an:0321.34016}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 6
\pages 1085--1091
\crossref{https://doi.org/10.1007/BF01099986}
Linking options:
  • https://www.mathnet.ru/eng/mzm7695
  • https://www.mathnet.ru/eng/mzm/v18/i6/p831
  • This publication is cited in the following 17 articles:
    1. A. Kh. Khanmamedov, M. F. Muradov, “Operator preobrazovaniya dlya uravneniya Shredingera s dopolnitelnym eksponentsialnym potentsialom”, Izv. vuzov. Matem., 2023, no. 9, 76–84  mathnet  crossref
    2. A. Kh. Khanmamedov, D. H. Orudjov, “On transformation operators for the Schrödinger equation with an additional periodic complex potential”, Bol. Soc. Mat. Mex., 29:2 (2023)  crossref
    3. A. Kh. Khanmamedov, M. F. Muradov, “Transformation Operator for the Schrödinger Equation with Additional Exponential Potential”, Russ Math., 67:9 (2023), 68  crossref
    4. A. Kh. Khanmamedov, A. F. Mamedova, “A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation”, Math. Notes, 112:2 (2022), 281–285  mathnet  crossref  crossref  mathscinet
    5. A. R. Bikmetov, I. Kh. Khusnullin, “Perturbation of Hill operator by narrow potentials”, Russian Math. (Iz. VUZ), 61:7 (2017), 1–10  mathnet  crossref  isi
    6. I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zhurn. matem. fiz., anal., geom., 11:2 (2015), 123–158  mathnet  crossref  mathscinet
    7. Alice Mikikits-Leitner, Gerald Teschl, Spectral Theory and Analysis, 2011, 107  crossref
    8. I. Egorova, G. Teschl, “A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation”, Zhurn. matem. fiz., anal., geom., 6:1 (2010), 21–33  mathnet  mathscinet  zmath  elib
    9. S. V. Frolov, “A spectral identity for the multidimensional Schrödinger equation with periodic potential”, Theoret. and Math. Phys., 91:3 (1992), 692–695  mathnet  crossref  mathscinet  isi
    10. Thomas M. Roberts, “Introduction to Schrödinger inverse scattering”, Physica B: Condensed Matter, 173:1-2 (1991), 157  crossref
    11. T M Roberts, “Inverse scattering for step-periodic potentials in one dimension”, Inverse Problems, 6:5 (1990), 797  crossref
    12. Thomas M. Roberts, “Scattering for step-periodic potentials in one dimension”, Journal of Mathematical Physics, 31:9 (1990), 2181  crossref
    13. N. E. Firsova, “On solution of the Cauchy problem for the Korteweg–de Vries equation with initial data the sum of a periodic and a rapidly decreasing function”, Math. USSR-Sb., 63:1 (1989), 257–265  mathnet  crossref  mathscinet  zmath
    14. N. E. Firsova, “The direct and inverse scattering problems for the one-dimensional perturbed Hill operator”, Math. USSR-Sb., 58:2 (1987), 351–388  mathnet  crossref  mathscinet  zmath
    15. N. E. Firsova, “Levinson formula for perturbed Hill operator”, Theoret. and Math. Phys., 62:2 (1985), 130–140  mathnet  crossref  mathscinet  zmath  isi
    16. P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. N. E. Firsova, “Some spectral identities for the one-dimensional hill operator”, Theoret. and Math. Phys., 37:2 (1978), 1022–1027  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025