Abstract:
We consider the inverse scattering problem for the operator L=−d2/dx2+p(x)+q(x), x∈R1. The perturbation potential q is expressed in terms of the periodic potential p and the scattering data. We also obtain identities for the eigenfunctions of the unperturbed Hill's operator L0=−d2/dx2+p(x).
Citation:
N. E. Firsova, “An inverse scattering problem for a perturbed Hill's operator”, Mat. Zametki, 18:6 (1975), 831–843; Math. Notes, 18:6 (1975), 1085–1091
This publication is cited in the following 17 articles:
A. Kh. Khanmamedov, M. F. Muradov, “Operator preobrazovaniya dlya uravneniya Shredingera s dopolnitelnym eksponentsialnym potentsialom”, Izv. vuzov. Matem., 2023, no. 9, 76–84
A. Kh. Khanmamedov, D. H. Orudjov, “On transformation operators for the Schrödinger equation with an additional periodic complex potential”, Bol. Soc. Mat. Mex., 29:2 (2023)
A. Kh. Khanmamedov, M. F. Muradov, “Transformation Operator for the Schrödinger Equation with Additional Exponential Potential”, Russ Math., 67:9 (2023), 68
A. Kh. Khanmamedov, A. F. Mamedova, “A Remark on the Inverse Scattering Problem for the Perturbed Hill Equation”, Math. Notes, 112:2 (2022), 281–285
A. R. Bikmetov, I. Kh. Khusnullin, “Perturbation of Hill operator by narrow potentials”, Russian Math. (Iz. VUZ), 61:7 (2017), 1–10
I. Egorova, Z. Gladka, T. L. Lange, G. Teschl, “Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials”, Zhurn. matem. fiz., anal., geom., 11:2 (2015), 123–158
Alice Mikikits-Leitner, Gerald Teschl, Spectral Theory and Analysis, 2011, 107
I. Egorova, G. Teschl, “A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation”, Zhurn. matem. fiz., anal., geom., 6:1 (2010), 21–33
S. V. Frolov, “A spectral identity for the multidimensional Schrödinger equation with periodic potential”, Theoret. and Math. Phys., 91:3 (1992), 692–695
Thomas M. Roberts, “Introduction to Schrödinger inverse scattering”, Physica B: Condensed Matter, 173:1-2 (1991), 157
T M Roberts, “Inverse scattering for step-periodic potentials in one dimension”, Inverse Problems, 6:5 (1990), 797
Thomas M. Roberts, “Scattering for step-periodic potentials in one dimension”, Journal of Mathematical Physics, 31:9 (1990), 2181
N. E. Firsova, “On solution of the Cauchy problem for the Korteweg–de Vries equation with initial data the sum of a periodic and a rapidly decreasing function”, Math. USSR-Sb., 63:1 (1989), 257–265
N. E. Firsova, “The direct and inverse scattering problems for the one-dimensional perturbed Hill operator”, Math. USSR-Sb., 58:2 (1987), 351–388
N. E. Firsova, “Levinson formula for perturbed Hill operator”, Theoret. and Math. Phys., 62:2 (1985), 130–140
P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60
N. E. Firsova, “Some spectral identities for the one-dimensional hill operator”, Theoret. and Math. Phys., 37:2 (1978), 1022–1027