|
This article is cited in 2 scientific papers (total in 2 papers)
The rational approximation of convex functions of the class $\operatorname{Lip}\alpha$
A. Khatamov M. V. Lomonosov Moscow State University
Abstract:
It is proved that if a function $f(x)$ is convex on $[a,b]$ and $f\in\operatorname{Lip}_{K(f)}\alpha$, $0<\alpha<1$, then the least uniform deviation of this function from rational functions of degree not higher than $n$ does not exceed $C(\alpha,\nu)(b-a)^\alpha K(f)\cdot n^{-2}\cdot\overbrace{\ln\dots\ln n}^{\nu\text{раз}}$ ($\nu$ is a natural number; $C(\alpha,\nu)$ depends only on $\alpha$ and $\nu$; $K(f)$ is a Lipschitz constant; and $n\ge n(\nu)=\min\{n:\overbrace{\ln\dots\ln n}^{\nu\text{раз}}\}$).
Received: 30.01.1975
Citation:
A. Khatamov, “The rational approximation of convex functions of the class $\operatorname{Lip}\alpha$”, Mat. Zametki, 18:6 (1975), 845–854; Math. Notes, 18:6 (1975), 1092–1096
Linking options:
https://www.mathnet.ru/eng/mzm7696 https://www.mathnet.ru/eng/mzm/v18/i6/p845
|
Statistics & downloads: |
Abstract page: | 148 | Full-text PDF : | 65 | First page: | 1 |
|