Abstract:
A new version is presented of the necessary and sufficient condition of convergence, to a normal law, of sums of independent variables in a nonclassical situation (i.e., absence of limiting negligibility of variables). The obtained condition differs from previously obtained conditions by the fact that it does not use Levy's metric and that is is closer to classical formulations. A similar condition is sufficient for the closeness of two convolutions when the number of components of the convolutions increases without bounds.
This publication is cited in the following 21 articles:
N. G. Gamkrelidze, “Issledovaniya po reshetchatym raspredeleniyam teorii veroyatnostei”, Issledovaniya po reshetchatym raspredeleniyam teorii veroyatnostei, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 218, VINITI RAN, M., 2022, 3–66
“Abstracts of talks given at the 4th International Conference on Stochastic Methods”, Theory Probab. Appl., 65:1 (2020), 121–172
I. A. Ibragimov, E. L. Presman, Sh. K. Formanov, “On modifications of the Lindeberg and Rotar' conditions in the central limit theorem”, Theory Probab. Appl., 65:4 (2021), 648–651
E. L. Presman, Sh. K. Formanov, “On Lindeberg–Feller Limit Theorem”, Dokl. Math., 99:2 (2019), 204
Albert N. Shiryaev, Graduate Texts in Mathematics, 95, Probability-1, 2016, 373
Daron Acemoglu, Vasco M. Carvalho, Asuman E. Ozdaglar, Alireza Tahbaz-Salehi, “The Network Origins of Aggregate Fluctuations”, SSRN Journal, 2011
Youri Davydov, Vladimir Rotar, “On a non-classical invariance principle”, Statistics & Probability Letters, 78:14 (2008), 2031
Sh. K. Formanov, “On the Stein–Tikhomirov method and its applications in nonclassical limit theorems”, Discrete Math. Appl., 17:1 (2007), 23–36
Sh. K. Formanov, “The Stein–Tikhomirov Method and a Nonclassical Central Limit Theorem”, Math. Notes, 71:4 (2002), 550–555
V. M. Zolotarev, “Natural estimates of convergence rate in the central limit theorem”, J Math Sci, 92:4 (1998), 4112
Modern Theory of Summation of Random Variables, 1997, 397
A. N. Shiryaev, Graduate Texts in Mathematics, 95, Probability, 1996, 308
Hermann Witting, Ulrich Müller-Funk, Mathematische Statistik II, 1995, 1
A. I. Shtern, B. A. Efimov, S. Yu. Maslov, V. A. Dushskiǐ, P. I. Lizorkin, Yu. A. Bakhturin, I. Kh. Sabitov, A. N. Parshin, A. V. Prokhorov, I. O. Sarmanov, E. D. Solomentsev, V. V. Fedorchuk, V. V. Afanas'ev, E. G. Goluzina, G. V. Kuz'mina, V. V. Sazonov, I. V. Proskuryakov, A. V. Arkhangel'skiǐ, B. V. Khvedelidze, B. I. Golubov, S. A. Telyakovskiǐ, V. A. Chuyanov, V. E. Plisko, P. S. Modenov, A. B. Ivanov, A. S. Fedenko, V. L. Popov, E. M. Chirka, D. P. Zhelobenko, N. N. Vil'yams, A. V. Chernavskiǐ, O. A. Ivanova, G. A. Meshcheryakov, V. I. Pashkovskiǐ, D. D. Sokolov, E. A. Palyutin, M. Sh. Tsalenko, D. V. Anosov, V. A. Skvortsov, V. A. Eleev, L. D. Kudryavtsev, A. M. Nakhushev, V. M. Millionshchikov, A. P. Soldatov, V. V. Pospelov, E. V. Shikin, E. N. Kuz'min, D. B. Anosov, N. K. Nikol'skiǐ, E. G. Sklyarenko, D. O. Baladze, S. N. Malygin, L. A. Skornyakov, Yu. V. Prokhorov, A. L. Onishchik, L. A. Bokut', A. F. A, Encyclopaedia of Mathematics, 1995, 489
V. I. Rotar', A. G. Sholomitskii, “A Condition for Convergence of Convolutions”, Theory Probab. Appl., 37:2 (1993), 398–401
Xing-Hong Xue, “On the principle of conditioning and convergence to mixtures of distributions for sums of dependent random variables”, Stochastic Processes and their Applications, 37:2 (1991), 175
V. M. Kruglov, “Convergence of distributions of random sums to the normal and the Poisson law”, Theory Probab. Appl., 36:2 (1991), 378–380
R. Š. Lipcer, A. N. Širyaev, “On the invariance principle for semimartingales with «nonclassical» assumptions”, Theory Probab. Appl., 28:1 (1984), 1–34
V. I. Rotar', “On summation of independent variables in a non-classical situation”, Russian Math. Surveys, 37:6 (1982), 151–175
V.I Rotar', “Limit theorems for polylinear forms”, Journal of Multivariate Analysis, 9:4 (1979), 511