|
Limit theorem for a supercritical Galton–Watson process
I. S. Badalbaev Mathematical Institute, Academy of Sciences of Uzbek SSR
Abstract:
Let $\mu_n$, $n=0,1,\dots$ be a Galton–Watson process, and $\tau_x+1$ the instant of first crossing of the level $x$ by the process. A limit theorem is proved for the joint distribution of the random variables
$$
\tau_x,\quad x-\mu_{\tau_x},\quad\mu_{\tau_x+1}-x\quad(x\to\infty)
$$
on the assumption that $M\mu_1\ln(1+\mu_1)<\infty$.
Received: 20.08.1973
Citation:
I. S. Badalbaev, “Limit theorem for a supercritical Galton–Watson process”, Mat. Zametki, 18:1 (1975), 123–128; Math. Notes, 18:1 (1975), 656–659
Linking options:
https://www.mathnet.ru/eng/mzm7633 https://www.mathnet.ru/eng/mzm/v18/i1/p123
|
Statistics & downloads: |
Abstract page: | 167 | Full-text PDF : | 63 | First page: | 1 |
|