Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 6, Pages 943–950 (Mi mzm7536)  

This article is cited in 6 scientific papers (total in 6 papers)

Structure of the closure of orbits in spaces of finite-dimensional linear SL(2) representations

V. L. Popov

Moscow Institute of Electronic Engineering
Full-text PDF (603 kB) Citations (6)
Abstract: The orbital decomposition of the closure of an arbitrary orbit in the space of a finite-dimensional linear representation of the group SL(2) is described in terms of certain integervalued invariants. The basic field is algebraically closed and has zero characteristic.
Received: 26.03.1973
English version:
Mathematical Notes, 1974, Volume 16, Issue 6, Pages 1159–1162
DOI: https://doi.org/10.1007/BF01098443
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: V. L. Popov, “Structure of the closure of orbits in spaces of finite-dimensional linear SL(2) representations”, Mat. Zametki, 16:6 (1974), 943–950; Math. Notes, 16:6 (1974), 1159–1162
Citation in format AMSBIB
\Bibitem{Pop74}
\by V.~L.~Popov
\paper Structure of the closure of orbits in spaces of finite-dimensional linear $SL(2)$ representations
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 6
\pages 943--950
\mathnet{http://mi.mathnet.ru/mzm7536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=371914}
\zmath{https://zbmath.org/?q=an:0313.20024}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 6
\pages 1159--1162
\crossref{https://doi.org/10.1007/BF01098443}
Linking options:
  • https://www.mathnet.ru/eng/mzm7536
  • https://www.mathnet.ru/eng/mzm/v16/i6/p943
  • This publication is cited in the following 6 articles:
    1. V. L. Popov, “Two Orbits: When Is One in the Closure of the Other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158  mathnet  crossref  mathscinet  isi  elib  elib
    2. E. V. Sharoiko, “On the Finiteness of the Number of Orbits on Quasihomogeneous (C)k×SL2(C)-manifolds”, Math. Notes, 81:5 (2007), 686–694  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Franz Pauer, “Closures of SL(2)-orbits in projective spaces”, Manuscripta Math, 87:1 (1995), 295  crossref
    4. Dina Bartels, Lecture Notes in Mathematics, 1146, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 1985, 1  crossref
    5. V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  mathnet  crossref  mathscinet  zmath
    6. Dina Bartels, Lecture Notes in Mathematics, 924, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin, 1982, 384  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :173
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025