Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1974, Volume 16, Issue 6, Pages 933–942 (Mi mzm7535)  

This article is cited in 1 scientific paper (total in 1 paper)

Annihilator conditions in endomorphism rings of modules

G. M. Brodskii

Yaroslavl State University
Full-text PDF (748 kB) Citations (1)
Abstract: The concepts of an intrinsically projective module and an intrinsically injective module are introduced and their connection with the presence of annihilator conditions in the endomorphism ring of a module is explained. It is shown that a ring $R$ is quasi-Frobenius if and only if in the endomorphism ring of any fully projective (or any fully injective) $R$-module it is true that $r(l(I))=I$ and $l(r(J))=J$ for all finitely generated right ideals $I$ and finitely generated left ideals $J$.
Received: 18.02.1974
English version:
Mathematical Notes, 1974, Volume 16, Issue 6, Pages 1153–1158
DOI: https://doi.org/10.1007/BF01098442
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: G. M. Brodskii, “Annihilator conditions in endomorphism rings of modules”, Mat. Zametki, 16:6 (1974), 933–942; Math. Notes, 16:6 (1974), 1153–1158
Citation in format AMSBIB
\Bibitem{Bro74}
\by G.~M.~Brodskii
\paper Annihilator conditions in endomorphism rings of modules
\jour Mat. Zametki
\yr 1974
\vol 16
\issue 6
\pages 933--942
\mathnet{http://mi.mathnet.ru/mzm7535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=382336}
\zmath{https://zbmath.org/?q=an:0308.16017}
\transl
\jour Math. Notes
\yr 1974
\vol 16
\issue 6
\pages 1153--1158
\crossref{https://doi.org/10.1007/BF01098442}
Linking options:
  • https://www.mathnet.ru/eng/mzm7535
  • https://www.mathnet.ru/eng/mzm/v16/i6/p933
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024