Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 2, Pages 249–259 (Mi mzm7255)  

Solution of a problem due to Bing

E. V. Sandrakova

Moscow Engineering Physics Institute
Abstract: It is proved in this article that for Alexander's “horned” sphere $S_A^2$ in $E^3$ there exists a pseudoisotopy $F_t$ of the space $E^3$ onto itself which transforms the boundary of the three-dimensional simplex $\sigma^3$ in $S_A^2$ such that the continuous mapping $F_1$ has a countable set of nondegenerate preimages of points each of which is not a locally connected continuum in $E^3$ intersecting $\partial\sigma^3$ in a singleton.
This answers affirmatively a question posed by R. H. Bing in the Mathematical Congress in Moscow in 1966.
Received: 02.04.1972
English version:
Mathematical Notes, 1973, Volume 14, Issue 2, Pages 701–706
DOI: https://doi.org/10.1007/BF01147118
Bibliographic databases:
UDC: 513
Language: Russian
Citation: E. V. Sandrakova, “Solution of a problem due to Bing”, Mat. Zametki, 14:2 (1973), 249–259; Math. Notes, 14:2 (1973), 701–706
Citation in format AMSBIB
\Bibitem{San73}
\by E.~V.~Sandrakova
\paper Solution of a~problem due to Bing
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 2
\pages 249--259
\mathnet{http://mi.mathnet.ru/mzm7255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=326707}
\zmath{https://zbmath.org/?q=an:0292.57002}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 2
\pages 701--706
\crossref{https://doi.org/10.1007/BF01147118}
Linking options:
  • https://www.mathnet.ru/eng/mzm7255
  • https://www.mathnet.ru/eng/mzm/v14/i2/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :98
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024