|
This article is cited in 2 scientific papers (total in 2 papers)
Characterizations of Steiner points
E. D. Positsel'skii Voronezh State University
Abstract:
To each convex compact $A$ in Euclidian space $E^n$ there corresponds a point $S(A)$ from $E^n$ such that 1) $S(x)=x$ for $x\in E^n$, 2) $S(A+B)=S(A)+S(B)$, 3) $S(A_i)\to0$, if $A_i$ converges in the Hausdorff metric to the unit sphere in $E^n$, then $S(A)$ is the Steiner point of the set $A$. The theorem improves certain earlier results on characterizations of the Steiner point.
Received: 29.01.1973
Citation:
E. D. Positsel'skii, “Characterizations of Steiner points”, Mat. Zametki, 14:2 (1973), 243–247; Math. Notes, 14:2 (1973), 698–700
Linking options:
https://www.mathnet.ru/eng/mzm7254 https://www.mathnet.ru/eng/mzm/v14/i2/p243
|
Statistics & downloads: |
Abstract page: | 274 | Full-text PDF : | 91 | First page: | 1 |
|