Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 6, Issue 5, Pages 573–582 (Mi mzm6965)  

This article is cited in 17 scientific papers (total in 17 papers)

On the best approximation of the differentiation operator on the half-line

V. N. Gabushin

V. A. Steklov Institute of Mathematics, Sverdlovsk Branch of the Academy of Sciences of USSR
Abstract: We solve a problem of S. B. Stechkin concerning the best approximation in the metric of C to the operator of k-th order differentiation on certain classes of differentiable functions defined on the half-line, by linear operators whose norms from L2 into C are bounded. We consider the analogous problem for linear differential operators with constant coefficients.
Received: 06.01.1969
English version:
Mathematical Notes, 1969, Volume 6, Issue 5, Pages 804–810
DOI: https://doi.org/10.1007/BF01101408
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. N. Gabushin, “On the best approximation of the differentiation operator on the half-line”, Mat. Zametki, 6:5 (1969), 573–582; Math. Notes, 6:5 (1969), 804–810
Citation in format AMSBIB
\Bibitem{Gab69}
\by V.~N.~Gabushin
\paper On the best approximation of the differentiation operator on the half-line
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 5
\pages 573--582
\mathnet{http://mi.mathnet.ru/mzm6965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=259442}
\zmath{https://zbmath.org/?q=an:0216.13603}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 5
\pages 804--810
\crossref{https://doi.org/10.1007/BF01101408}
Linking options:
  • https://www.mathnet.ru/eng/mzm6965
  • https://www.mathnet.ru/eng/mzm/v6/i5/p573
  • This publication is cited in the following 17 articles:
    1. Dmytro Skorokhodov, “The Landau–Kolmogorov problem on a finite interval in the Taikov case”, Journal of Approximation Theory, 280 (2022), 105771  crossref
    2. Babenko V. Babenko Yu. Kriachko N. Skorokhodov D., “On Hardy-Littlewood-Polya and Taikov Type Inequalities For Multiple Operators in Hilbert Spaces”, Anal. Math., 47:4 (2021), 709–745  crossref  isi
    3. Kozynenko O. Skorokhodov D., “Kolmogorov-Type Inequalities For the Norms of Fractional Derivatives of Functions Defined on the Positive Half Line”, Ukr. Math. J., 72:10 (2021), 1579–1594  crossref  isi
    4. V. V. Arestov, R. R. Akopyan, “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 7–31  mathnet  crossref  elib
    5. Vitalii V. Arestov, “On the best approximation of the differentiation operator”, Ural Math. J., 1:1 (2015), 20–29  mathnet  crossref  zmath
    6. S. V. Zelik, A. A. Ilyin, “Green's function asymptotics and sharp interpolation inequalities”, Russian Math. Surveys, 69:2 (2014), 209–260  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Babenko V.F. Churilova M.S. Parfinovych N.V. Skorokhodov D.S., “Kolmogorov Type Inequalities For the Marchaud Fractional Derivatives on the Real Line and the Half-Line”, J. Inequal. Appl., 2014, 504  crossref  isi
    8. A. R. Aliev, “On the Solvability of Initial Boundary-Value Problems for a Class of Operator-Differential Equations of Third Order”, Math. Notes, 90:3 (2011), 307–321  mathnet  crossref  crossref  mathscinet  isi
    9. V. Tikhomirov, A. Kochurov, “Kolmogorov-type inequalities on the whole line or half line and the Lagrange principle in the theory of extremum problems”, Eurasian Math. J., 2:3 (2011), 125–142  mathnet  mathscinet  zmath
    10. S. S. Mirzoev, S. G. Veliev, “On the estimation of the norms of intermediate derivatives in some abstract spaces”, Zhurn. matem. fiz., anal., geom., 6:1 (2010), 73–83  mathnet  mathscinet  zmath
    11. A. A. Lunev, L. L. Oridoroga, “Exact Constants in Generalized Inequalities for Intermediate Derivatives”, Math. Notes, 85:5 (2009), 703–711  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. K. Watanabe, Y. Kametaka, A. Nagai, K. Takemura, H. Yamagishi, “The best constant of Sobolev inequality on a bounded interval”, Journal of Mathematical Analysis and Applications, 340:1 (2008), 699  crossref
    13. G. A. Kalyabin, “Some Problems for Sobolev Spaces on the Half-line”, Proc. Steklov Inst. Math., 255 (2006), 150–158  mathnet  crossref  mathscinet  elib
    14. G. A. Kalyabin, “Effective Formulas for Constants in the Stechkin–Gabushin Problem”, Proc. Steklov Inst. Math., 248 (2005), 118–124  mathnet  mathscinet  zmath
    15. G. A. Kalyabin, “Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)”, Funct. Anal. Appl., 38:3 (2004), 184–191  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Kolmogorov-type inequalities for derivatives”, Sb. Math., 188:12 (1997), 1799–1832  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :158
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025