|
Matematicheskie Zametki, 1969, Volume 6, Issue 5, Pages 567–572
(Mi mzm6964)
|
|
|
|
On sequences of Fourier coefficients of functions of Hölder classes
G. S. Abros'kinaa, B. S. Mityaginb a Voronezh State Pedagogical Institute
b Central Economics and Mathematics Institute, USSR Academy of Sciences
Abstract:
The following theorem is proved. Let {ψl(t)} be an arbitrary complete orthonormal system on [0,1] and let 1/2<α<1. Then an f(t)∈Cβ exists for all β<α such that ∑∞k=1|ck(f)|p=∞, p=2/(1+2α), where ck(f)=1∫0fψkdt.
Received: 17.12.1968
Citation:
G. S. Abros'kina, B. S. Mityagin, “On sequences of Fourier coefficients of functions of Hölder classes”, Mat. Zametki, 6:5 (1969), 567–572; Math. Notes, 6:5 (1969), 800–803
Linking options:
https://www.mathnet.ru/eng/mzm6964 https://www.mathnet.ru/eng/mzm/v6/i5/p567
|
Statistics & downloads: |
Abstract page: | 330 | Full-text PDF : | 138 | First page: | 1 |
|