|
Matematicheskie Zametki, 1969, Volume 6, Issue 2, Pages 181–185
(Mi mzm6921)
|
|
|
|
A symplectic space with $p$-groups of operators over a field of characteristic $p$
Z. I. Borevich Leningrad State University named after A. A. Zhdanov
Abstract:
Let $K$ be a field of nonzero characteristic pne2, let $G$ be a finite $p$-group, and let $M$ be a nondegenerate finite-dimensional symplectic space over $K$ with the matching structure of a $G$-module. It is proven that if $M$ is a free $K[G]$-module then there exists in $M$ a normal basis with a canonical Gram matrix.
Received: 13.12.1968
Citation:
Z. I. Borevich, “A symplectic space with $p$-groups of operators over a field of characteristic $p$”, Mat. Zametki, 6:2 (1969), 181–185; Math. Notes, 6:2 (1969), 567–569
Linking options:
https://www.mathnet.ru/eng/mzm6921 https://www.mathnet.ru/eng/mzm/v6/i2/p181
|
|