Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1969, Volume 6, Issue 2, Pages 173–179 (Mi mzm6920)  

This article is cited in 1 scientific paper (total in 1 paper)

A class of completely continuous operators in a Hilbert space of entire functions of exponential type

V. Ya. Lin
Full-text PDF (428 kB) Citations (1)
Abstract: Any positive Borel measure $\mu$ in $R^n$ which satisfies the condition $\sup\limits_y\mu\{x\in R^n\mid|x-y|\le1\}<\infty$ generates a Hermitian bilinear form in the Hilbert space of entire functions $f\colon C^n\to C^1$ of exponential type not exceedingtau which are square-summable on $R^n$. In this paper a criterion is given for the complete continuity of this form.
Received: 16.12.1968
English version:
Mathematical Notes, 1969, Volume 6, Issue 2, Pages 563–566
DOI: https://doi.org/10.1007/BF01093698
Bibliographic databases:
UDC: 513.88
Language: Russian
Citation: V. Ya. Lin, “A class of completely continuous operators in a Hilbert space of entire functions of exponential type”, Mat. Zametki, 6:2 (1969), 173–179; Math. Notes, 6:2 (1969), 563–566
Citation in format AMSBIB
\Bibitem{Lin69}
\by V.~Ya.~Lin
\paper A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type
\jour Mat. Zametki
\yr 1969
\vol 6
\issue 2
\pages 173--179
\mathnet{http://mi.mathnet.ru/mzm6920}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=251578}
\zmath{https://zbmath.org/?q=an:0189.43202|0181.13701}
\transl
\jour Math. Notes
\yr 1969
\vol 6
\issue 2
\pages 563--566
\crossref{https://doi.org/10.1007/BF01093698}
Linking options:
  • https://www.mathnet.ru/eng/mzm6920
  • https://www.mathnet.ru/eng/mzm/v6/i2/p173
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024