Abstract:
We study the trajectory attractor of a nonlinear nonautonomous hyperbolic equation with dissipation depending on a small parameter. The nonlinear function appearing in this equation does not satisfy the Lipschitz condition. It is shown that, as the small parameter tends to zero, the trajectory attractor of the hyperbolic equation converges to the trajectory attractor of the limit parabolic equation in the corresponding topology.
Citation:
A. S. Lyapin, “On the Limit Behavior of the Trajectory Attractor of a Nonlinear Hyperbolic Equation Containing a Small Parameter at the Highest Derivative”, Mat. Zametki, 85:5 (2009), 745–753; Math. Notes, 85:5 (2009), 712–719
\Bibitem{Lya09}
\by A.~S.~Lyapin
\paper On the Limit Behavior of the Trajectory Attractor of a Nonlinear Hyperbolic Equation Containing a Small Parameter at the Highest Derivative
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 745--753
\mathnet{http://mi.mathnet.ru/mzm6911}
\crossref{https://doi.org/10.4213/mzm6911}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572864}
\zmath{https://zbmath.org/?q=an:1183.35056}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 5
\pages 712--719
\crossref{https://doi.org/10.1134/S0001434609050113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949153067}
Linking options:
https://www.mathnet.ru/eng/mzm6911
https://doi.org/10.4213/mzm6911
https://www.mathnet.ru/eng/mzm/v85/i5/p745
This publication is cited in the following 1 articles:
Peng Gao, “Asymptotic analysis for semilinear heat equation with hyperbolic perturbation and random fast oscillating noise”, Journal of Differential Equations, 431 (2025), 113215