Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 5, Pages 737–744
DOI: https://doi.org/10.4213/mzm4299
(Mi mzm4299)
 

This article is cited in 3 scientific papers (total in 3 papers)

Exact Constants in Generalized Inequalities for Intermediate Derivatives

A. A. Lunev, L. L. Oridoroga

Donetsk National University
Full-text PDF (457 kB) Citations (3)
References:
Abstract: Consider the Sobolev space Wn2(R+) on the semiaxis with norm of general form defined by a quadratic polynomial in derivatives with nonnegative coefficients. We study the problem of exact constants An,k in inequalities of Kolmogorov type for the values of intermediate derivatives |f(k)(0)|An,kf. In the general case, the expression for the constants An,k is obtained as the ratio of two determinants. Using a general formula, we obtain an explicit expression for the constants An,k in the case of the following norms:
f21=f2L2+f(n)2L2andf22=nl=0f(l)2L2.
In the case of the norm 1, formulas for the constants An,k were obtained earlier by another method due to Kalyabin. The asymptotic behavior of the constants An,k is also studied in the case of the norm 2. In addition, we prove a symmetry property of the constants An,k in the general case.
Keywords: Sobolev space, Kolmogorov-type inequalities, intermediate derivative, linear functional in Hilbert space, Vandermonde matrix, Cramer's rule.
Received: 19.11.2007
Revised: 02.12.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 5, Pages 703–711
DOI: https://doi.org/10.1134/S0001434609050101
Bibliographic databases:
UDC: 517.518.26
Language: Russian
Citation: A. A. Lunev, L. L. Oridoroga, “Exact Constants in Generalized Inequalities for Intermediate Derivatives”, Mat. Zametki, 85:5 (2009), 737–744; Math. Notes, 85:5 (2009), 703–711
Citation in format AMSBIB
\Bibitem{LunOri09}
\by A.~A.~Lunev, L.~L.~Oridoroga
\paper Exact Constants in Generalized Inequalities for Intermediate Derivatives
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 5
\pages 737--744
\mathnet{http://mi.mathnet.ru/mzm4299}
\crossref{https://doi.org/10.4213/mzm4299}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572863}
\zmath{https://zbmath.org/?q=an:1180.41009}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 5
\pages 703--711
\crossref{https://doi.org/10.1134/S0001434609050101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70049096252}
Linking options:
  • https://www.mathnet.ru/eng/mzm4299
  • https://doi.org/10.4213/mzm4299
  • https://www.mathnet.ru/eng/mzm/v85/i5/p737
  • This publication is cited in the following 3 articles:
    1. Dmytro Skorokhodov, “The Landau–Kolmogorov problem on a finite interval in the Taikov case”, Journal of Approximation Theory, 280 (2022), 105771  crossref
    2. Babenko V. Babenko Yu. Kriachko N. Skorokhodov D., “On Hardy-Littlewood-Polya and Taikov Type Inequalities For Multiple Operators in Hilbert Spaces”, Anal. Math., 47:4 (2021), 709–745  crossref  mathscinet  isi
    3. Osipenko K.Yu., “Recovery of Derivatives For Functions Defined on the Semiaxis”, J. Complex., 48 (2018), 111–118  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:542
    Full-text PDF :281
    References:66
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025