Abstract:
Necessary and sufficient conditions on the reflection coefficient are obtained for the Schroedinger equation on the whole axis with a potential growing on one side by utilization of the inverse problem formalism.
Citation:
P. P. Kulish, “Inverse scattering problem for the Schroedinger equation on the axis”, Mat. Zametki, 4:6 (1968), 677–684; Math. Notes, 4:6 (1968), 895–899
\Bibitem{Kul68}
\by P.~P.~Kulish
\paper Inverse scattering problem for the Schroedinger equation on the axis
\jour Mat. Zametki
\yr 1968
\vol 4
\issue 6
\pages 677--684
\mathnet{http://mi.mathnet.ru/mzm6788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=244547}
\zmath{https://zbmath.org/?q=an:0176.04501}
\transl
\jour Math. Notes
\yr 1968
\vol 4
\issue 6
\pages 895--899
\crossref{https://doi.org/10.1007/BF01110825}
Linking options:
https://www.mathnet.ru/eng/mzm6788
https://www.mathnet.ru/eng/mzm/v4/i6/p677
This publication is cited in the following 9 articles:
A. Kh. Khanmamedov, D. G. Orudzhev, “Inverse scattering problem for the Schrödinger equation with
an additional increasing potential on the line”, Theoret. and Math. Phys., 216:1 (2023), 1010–1023
I. M. Guseinov, A. Kh. Khanmamedov, A. F. Mamedova, “Inverse scattering problem for the Schrödinger equation with an additional quadratic potential on the entire axis”, Theoret. and Math. Phys., 195:1 (2018), 538–547
Hidayat M. Huseynov, Agil K. Khanmamedov, Rza I. Aleskerov, “The inverse scattering problem for a discrete dirac system on the whole axis”, Journal of Inverse and Ill-posed Problems, 25:6 (2017), 829
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
A. Kh. Khanmamedov, “The inverse scattering problem for a discrete Sturm-Liouville equation on the line”, Sb. Math., 202:7 (2011), 1071–1083
Thomas M. Roberts, “Introduction to Schrödinger inverse scattering”, Physica B: Condensed Matter, 173:1-2 (1991), 157
A P Katchalov, Ya V Kurylev, “Inverse scattering proble for a one-dimensional Stark effect Hamiltonian”, Inverse Problems, 6:1 (1990), L1
Gerhard Kristensson, “The one-dimensional inverse scattering problem for an increasing potential”, Journal of Mathematical Physics, 27:3 (1986), 804
B. S. Pavlov, “On the one-dimensional scattering of plane waves on an arbitrary potential
q, q(x)=0, x<0”, Theoret. and Math. Phys., 16:1 (1973), 706–713