Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1968, Volume 4, Issue 6, Pages 669–676 (Mi mzm6787)  

Embeddingof a finite $CW$-complex in a sphere

Ya. N. Shapiro

Leningrad State University named after A. A. Zhdanov
Abstract: The following theorem is proven: for any finite $CW$-complex X of dimensionality n, no one can provide the Euclidean sphere of dimensionality $(n+1)(n+2)/2$ with a $CW$-complex structure such that $X$ will turn out to be isomorphic to some subcomplex of this $CW$-complex.
Received: 29.01.1968
English version:
Mathematical Notes, 1968, Volume 4, Issue 6, Pages 891–894
DOI: https://doi.org/10.1007/BF01110824
Bibliographic databases:
UDC: 513.83
Language: Russian
Citation: Ya. N. Shapiro, “Embeddingof a finite $CW$-complex in a sphere”, Mat. Zametki, 4:6 (1968), 669–676; Math. Notes, 4:6 (1968), 891–894
Citation in format AMSBIB
\Bibitem{Sha68}
\by Ya.~N.~Shapiro
\paper Embeddingof a~finite $CW$-complex in a~sphere
\jour Mat. Zametki
\yr 1968
\vol 4
\issue 6
\pages 669--676
\mathnet{http://mi.mathnet.ru/mzm6787}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=243528}
\zmath{https://zbmath.org/?q=an:0176.53202|0165.26502}
\transl
\jour Math. Notes
\yr 1968
\vol 4
\issue 6
\pages 891--894
\crossref{https://doi.org/10.1007/BF01110824}
Linking options:
  • https://www.mathnet.ru/eng/mzm6787
  • https://www.mathnet.ru/eng/mzm/v4/i6/p669
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024