Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 6, Pages 907–926
DOI: https://doi.org/10.4213/mzm6567
(Mi mzm6567)
 

This article is cited in 23 scientific papers (total in 23 papers)

Embeddings and Separable Differential Operators in Spaces of Sobolev–Lions type

V. B. Shakhmurov

Okan University
References:
Abstract: We study embedding theorems for anisotropic spaces of Bessel–Lions type Hp,γl(Ω;E0,E), where E0 and E are Banach spaces. We obtain the most regular spaces Eα for which mixed differentiation operators Dα from Hp,γl(Ω;E0,E) to Lp,γ(Ω;Eα) are bounded. The spaces Eα are interpolation spaces between E0 and E, depending on α=(α1,α2,,αn) and l=(l1,l2,,ln). The results obtained are applied to prove the separability of anisotropic differential operator equations with variable coefficients.
Received: 02.09.2005
English version:
Mathematical Notes, 2008, Volume 84, Issue 6, Pages 842–858
DOI: https://doi.org/10.1134/S0001434608110278
Bibliographic databases:
UDC: embedding operator, Hilbert space, Banach-valued function space, differential operator equation, operator-valued Fourier multiplier, interpolation of Banach spaces, probability space, UMD-space, Sobolev--Lions space
Language: Russian
Citation: V. B. Shakhmurov, “Embeddings and Separable Differential Operators in Spaces of Sobolev–Lions type”, Mat. Zametki, 84:6 (2008), 907–926; Math. Notes, 84:6 (2008), 842–858
Citation in format AMSBIB
\Bibitem{Sha08}
\by V.~B.~Shakhmurov
\paper Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 907--926
\mathnet{http://mi.mathnet.ru/mzm6567}
\crossref{https://doi.org/10.4213/mzm6567}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492805}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 842--858
\crossref{https://doi.org/10.1134/S0001434608110278}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749091391}
Linking options:
  • https://www.mathnet.ru/eng/mzm6567
  • https://doi.org/10.4213/mzm6567
  • https://www.mathnet.ru/eng/mzm/v84/i6/p907
  • This publication is cited in the following 23 articles:
    1. V. B. Shakhmurov, “Separability Properties of Differential Operators in Exterior Regions and Applications”, Lobachevskii J Math, 44:12 (2023), 5406  crossref
    2. Veli Shakhmurov, Rishad Shahmurov, “The Regularity Properties and Blow-up of Solutions for Nonlocal Wave Equations and Applications”, Results Math, 77:6 (2022)  crossref
    3. Shakhmurov V., “Fractional Abstract Differential Equations and Applications”, Bull. Malays. Math. Sci. Soc., 44:2 (2021), 1065–1078  crossref  mathscinet  isi
    4. Shakhmurov V.B., Shahmurov R., “The Improved Abstract Boussinesq Equations and Application”, Mediterr. J. Math., 18:6 (2021), 233  crossref  mathscinet  isi
    5. Musaev H.K., “The Cauchy Problem For Degenerate Parabolic Convolution Equation”, TWMS J. Pure Appl. Math., 12:2 (2021), 278–288  isi
    6. Agarwal R.P., Shakhmurov V.B., “Integral Type Cauchy Problem For Abstract Wave Equations and Applications”, Appl. Anal., 2021  crossref  isi
    7. Shakhmurov V.B., “The Cauchy Problem For Nonlocal Abstract Schrodinger Equations and Applications”, Anal. Math. Phys., 11:4 (2021), 147  crossref  mathscinet  isi  scopus
    8. Shakhmurov V., “Fractional Differential Operators in Vector-Valued Spaces and Applications”, Math. Inequal. Appl., 23:2 (2020), 521–538  crossref  mathscinet  isi
    9. Shakhmurov V., “Nonlocal Fractional Differential Equations and Applications”, Complex Anal. Oper. Theory, 14:4 (2020), 49  crossref  mathscinet  isi
    10. Shakhmurov V., “Regularity Properties of Nonlinear Abstract Schrodinger Equations and Applications”, Int. J. Math., 31:13 (2020), 2050105  crossref  mathscinet  isi
    11. Ragusa M.A., Shakhmurov V.B., “A Navier-Stokes-Type Problem With High-Order Elliptic Operator and Applications”, Mathematics, 8:12 (2020), 2256  crossref  isi
    12. Musaev H.K., “The Nonlocal Bvp For the System of Boussinesq Equation of Infinite Many Order”, Proceedings of the7Th International Conference on Control and Optimization With Industrial Applications, Vol. 1, eds. Fikret A., Tamer B., Baku State Univ, Inst Applied Mathematics, 2020, 290–292  isi
    13. Shakhmurov V., “Regularity Properties of Schrodinger Equations in Vector-Valued Spaces and Applications”, Forum Math., 31:1 (2019), 149–166  crossref  mathscinet  isi  scopus
    14. Shakhmurov V.B., Shahmurov R., “The Cauchy Problem For Boussinesq Equations With General Elliptic Part”, Anal. Math. Phys., 9:4 (2019), 1689–1709  crossref  mathscinet  isi  scopus
    15. Shakhmurov V.B., “Nonlocal problems for Boussinesq equations”, Nonlinear Anal.-Theory Methods Appl., 142 (2016), 134–151  crossref  mathscinet  zmath  isi  scopus
    16. Shakhmurov V., “Abstract Differential Equations with VMO Coefficients in Half Space and Applications”, Mediterr. J. Math., 13:4 (2016), 1765–1785  crossref  mathscinet  zmath  isi  elib  scopus
    17. Shakhmurov V.B., “the Cauchy Problem For Generalized Abstract Boussinesq Equations”, Dyn. Syst. Appl., 25:1-2 (2016), 109–122  mathscinet  zmath  isi  elib
    18. Shakhmurov V.B., Ekincioglu I., “Linear and Nonlinear Convolution Elliptic Equations”, Bound. Value Probl., 2013  crossref  mathscinet  isi  scopus
    19. Gusev N.A., “Asymptotic properties of linearized equations of low compressible fluid motion”, J. Math. Fluid Mech., 14:3 (2012), 591–618  crossref  mathscinet  zmath  isi  elib  scopus
    20. Ragusa M.A., “Embeddings for Morrey-Lorentz spaces”, J. Optim. Theory Appl., 154:2 (2012), 491–499  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:764
    Full-text PDF :228
    References:99
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025