Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 6, Pages 927–947
DOI: https://doi.org/10.4213/mzm3996
(Mi mzm3996)
 

This article is cited in 8 scientific papers (total in 8 papers)

On Sets with Small Doubling Property

I. D. Shkredov

Lviv Polytechnic National University
Full-text PDF (575 kB) Citations (8)
References:
Abstract: Suppose that $G$ is an arbitrary Abelian group and $A$ is any finite subset $G$. A set $A$ is called a set with small sumset if, for some number $K$, we have $|A+A|\le K|A|$. The structural properties of such sets were studied in the papers of Freiman, Bilu, Ruzsa, Chang, Green, and Tao. In the present paper, we prove that, under certain constraints on $K$, for any set with small sumset, there exists a set $\Lambda$, $\Lambda\ll_{\varepsilon}K\log|A|$, such that $|A\cap \Lambda|\gg |A|/K^{1/2+\varepsilon}$, where $\varepsilon>0$. In contrast to the results of the previous authors, our theorem is nontrivial even for a sufficiently large $K$. For example, for $K$ we can take $|A|^\eta$, where $\eta>0$. The method of proof used by us is quite elementary.
Keywords: Abelian group, sumset (Minkowski sum), set with small doubling property, arithmetic progression, connected set, dissociate set, Cauchy–Bunyakovskii inequality.
Received: 01.03.2007
Revised: 02.04.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 6, Pages 859–878
DOI: https://doi.org/10.1134/S000143460811028X
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: I. D. Shkredov, “On Sets with Small Doubling Property”, Mat. Zametki, 84:6 (2008), 927–947; Math. Notes, 84:6 (2008), 859–878
Citation in format AMSBIB
\Bibitem{Shk08}
\by I.~D.~Shkredov
\paper On Sets with Small Doubling Property
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 927--947
\mathnet{http://mi.mathnet.ru/mzm3996}
\crossref{https://doi.org/10.4213/mzm3996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492806}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 859--878
\crossref{https://doi.org/10.1134/S000143460811028X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749090994}
Linking options:
  • https://www.mathnet.ru/eng/mzm3996
  • https://doi.org/10.4213/mzm3996
  • https://www.mathnet.ru/eng/mzm/v84/i6/p927
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024