Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 6, Pages 927–947
DOI: https://doi.org/10.4213/mzm3996
(Mi mzm3996)
 

This article is cited in 8 scientific papers (total in 8 papers)

On Sets with Small Doubling Property

I. D. Shkredov

Lviv Polytechnic National University
Full-text PDF (575 kB) Citations (8)
References:
Abstract: Suppose that G is an arbitrary Abelian group and A is any finite subset G. A set A is called a set with small sumset if, for some number K, we have |A+A|K|A|. The structural properties of such sets were studied in the papers of Freiman, Bilu, Ruzsa, Chang, Green, and Tao. In the present paper, we prove that, under certain constraints on K, for any set with small sumset, there exists a set Λ, ΛεKlog|A|, such that |AΛ||A|/K1/2+ε, where ε>0. In contrast to the results of the previous authors, our theorem is nontrivial even for a sufficiently large K. For example, for K we can take |A|η, where η>0. The method of proof used by us is quite elementary.
Keywords: Abelian group, sumset (Minkowski sum), set with small doubling property, arithmetic progression, connected set, dissociate set, Cauchy–Bunyakovskii inequality.
Received: 01.03.2007
Revised: 02.04.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 6, Pages 859–878
DOI: https://doi.org/10.1134/S000143460811028X
Bibliographic databases:
UDC: 512.54
Language: Russian
Citation: I. D. Shkredov, “On Sets with Small Doubling Property”, Mat. Zametki, 84:6 (2008), 927–947; Math. Notes, 84:6 (2008), 859–878
Citation in format AMSBIB
\Bibitem{Shk08}
\by I.~D.~Shkredov
\paper On Sets with Small Doubling Property
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 6
\pages 927--947
\mathnet{http://mi.mathnet.ru/mzm3996}
\crossref{https://doi.org/10.4213/mzm3996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492806}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 6
\pages 859--878
\crossref{https://doi.org/10.1134/S000143460811028X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262855600028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749090994}
Linking options:
  • https://www.mathnet.ru/eng/mzm3996
  • https://doi.org/10.4213/mzm3996
  • https://www.mathnet.ru/eng/mzm/v84/i6/p927
  • This publication is cited in the following 8 articles:
    1. A. A. Uvakin, “On Two-Dimensional Sums in Abelian Groups”, Math. Notes, 103:2 (2018), 271–289  mathnet  crossref  crossref  mathscinet  isi  elib
    2. Schoen T., Shkredov I.D., “Additive Dimension and a Theorem of Sanders”, J. Aust. Math. Soc., 100:1 (2016), 124–144  crossref  mathscinet  zmath  isi  scopus
    3. A. A. Uvakin, “On Two-Dimensional Sums and Differences”, Math. Notes, 98:4 (2015), 636–652  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Ilya Sh., “Energies and Structure of Additive Sets”, Electron. J. Comb., 21:3 (2014), P3.44  zmath  isi
    5. I. D. Shkredov, “Some new results on higher energies”, Trans. Moscow Math. Soc., 74 (2013), 31–63  mathnet  crossref  mathscinet  zmath  elib
    6. Sanders T., “On certain other sets of integers”, J. Anal. Math., 116 (2012), 53–82  crossref  mathscinet  zmath  isi  elib  scopus
    7. Sanders T., “A quantitative version of the non-abelian idempotent theorem”, Geom. Funct. Anal., 21:1 (2011), 141–221  crossref  mathscinet  zmath  isi  elib  scopus
    8. Shkredov I.D., Yekhanin S., “Sets with large additive energy and symmetric sets”, J. Combin. Theory Ser. A, 118:3 (2011), 1086–1093  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:632
    Full-text PDF :229
    References:69
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025