Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 4, Pages 532–551
DOI: https://doi.org/10.4213/mzm6137
(Mi mzm6137)
 

This article is cited in 10 scientific papers (total in 10 papers)

The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere

M. V. Deikalova

Ural State University
References:
Abstract: We discuss three related extremal problems on the set $\mathscr P_{n,m}$ of algebraic polynomials of given degree $n$ on the unit sphere $\mathbb S^{m-1}$ of Euclidean space $\mathbb R^m$ of dimension $m\ge 2$. (1) The norm of the functional $F(h)=F_hP_n=\int_{\mathbb C(h)}P_n(x)\,dx$, which is equal to the integral over the spherical cap $\mathbb C(h)$ of angular radius $\operatorname{arccos} h$, $-1<h<1$, on the set $\mathscr P_{n,m}$ with the norm of the space $L(\mathbb S^{m-1})$ of summable functions on the sphere. (2) The best approximation in $L_\infty(\mathbb S^{m-1})$ of the characteristic function $\chi_h$ of the cap $\mathbb C(h)$ by the subspace $\mathscr P^\bot_{n,m}$ of functions from $L_\infty(\mathbb S^{m-1})$ that are orthogonal to the space of polynomials $\mathscr P_{n,m}$. (3) The best approximation in the space $L(\mathbb S^{m-1})$ of the function $\chi_h$ by the space of polynomials $\mathscr P_{n,m}$. We present the solution of all three problems for the value $h=t(n,m)$ which is the largest root of the polynomial in a single variable of degree $n+1$ least deviating from zero in the space $L_1^\phi$ on the interval $(-1,1)$ with ultraspheric weight $\phi(t)=(1-t^2)^\alpha$, $\alpha=(m-3)/2$.
Keywords: Taikov functional, algebraic polynomial, Euclidean sphere, spherical cap, polynomial of least deviation, Lebesgue measure, Hahn–Banach theorem, zonal function.
Received: 31.12.2007
Revised: 11.01.2008
English version:
Mathematical Notes, 2008, Volume 84, Issue 4, Pages 498–514
DOI: https://doi.org/10.1134/S0001434608090228
Bibliographic databases:
UDC: 517.518.86
Language: Russian
Citation: M. V. Deikalova, “The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere”, Mat. Zametki, 84:4 (2008), 532–551; Math. Notes, 84:4 (2008), 498–514
Citation in format AMSBIB
\Bibitem{Dei08}
\by M.~V.~Deikalova
\paper The Taikov Functional in the Space of Algebraic Polynomials on the Multidimensional Euclidean Sphere
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 4
\pages 532--551
\mathnet{http://mi.mathnet.ru/mzm6137}
\crossref{https://doi.org/10.4213/mzm6137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485194}
\zmath{https://zbmath.org/?q=an:1170.46030}
\elib{https://elibrary.ru/item.asp?id=13576203}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 4
\pages 498--514
\crossref{https://doi.org/10.1134/S0001434608090228}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260516700022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149084658}
Linking options:
  • https://www.mathnet.ru/eng/mzm6137
  • https://doi.org/10.4213/mzm6137
  • https://www.mathnet.ru/eng/mzm/v84/i4/p532
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :219
    References:78
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024