|
This article is cited in 10 scientific papers (total in 10 papers)
On the Uniqueness Criterion for Solutions of the Sturm–Liouville Equation
Kh. K. Ishkin Bashkir State University
Abstract:
We consider the Sturm–Liouville equation
$$
-y''+qy=\lambda^2y
$$
in an annular domain $K$ from $\mathbb C$ and obtain necessary and sufficient conditions on the potential $q$ under which all solutions of the equation $-y''(z)+q(z)y(z)=\lambda^2y(z)$, $z\in\gamma$, where
$\gamma$ is a certain curve, are unique in the domain $K$ for all values of the parameter $\lambda\in\mathbb C$.
Keywords:
spectral problem, Sturm–Liouville equation, holomorphic function, uniqueness problem, Bessel function, Rouché theorem, meromorphic function, simple pole.
Received: 14.03.2007
Citation:
Kh. K. Ishkin, “On the Uniqueness Criterion for Solutions of the Sturm–Liouville Equation”, Mat. Zametki, 84:4 (2008), 552–566; Math. Notes, 84:4 (2008), 515–528
Linking options:
https://www.mathnet.ru/eng/mzm4173https://doi.org/10.4213/mzm4173 https://www.mathnet.ru/eng/mzm/v84/i4/p552
|
Statistics & downloads: |
Abstract page: | 600 | Full-text PDF : | 225 | References: | 87 | First page: | 9 |
|