Abstract:
For series of special form, we obtain an expansion in powers of the parameter. The coefficients of the expansion can be written out explicitly in terms of Bernoulli polynomials. In a particular case, we obtain an expansion in powers of the parameter of upper bounds for deviations of periodic differentiable functions from their Poisson integrals.
Citation:
V. P. Zastavnyi, “On Series Arising from the Approximation of Periodic Differentiable Functions by Poisson Integrals”, Mat. Zametki, 86:4 (2009), 497–511; Math. Notes, 86:4 (2009), 469–482
\Bibitem{Zas09}
\by V.~P.~Zastavnyi
\paper On Series Arising from the Approximation of Periodic Differentiable Functions by Poisson Integrals
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 4
\pages 497--511
\mathnet{http://mi.mathnet.ru/mzm5182}
\crossref{https://doi.org/10.4213/mzm5182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591342}
\zmath{https://zbmath.org/?q=an:05656351}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 4
\pages 469--482
\crossref{https://doi.org/10.1134/S0001434609090235}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249108698}
Linking options:
https://www.mathnet.ru/eng/mzm5182
https://doi.org/10.4213/mzm5182
https://www.mathnet.ru/eng/mzm/v86/i4/p497
This publication is cited in the following 2 articles:
V. P. Zastavnyi, V. V. Savchuk, “Approximation of Classes of Convolutions by Linear Operators of Special Form”, Math. Notes, 90:3 (2011), 333–343
Viktor P. Zastavnyi, “Exact estimation of an approximation of some classes of differentiable functions by convolution operators”, J Math Sci, 175:2 (2011), 192