Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 4, Pages 512–524
DOI: https://doi.org/10.4213/mzm4023
(Mi mzm4023)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stabilization of Locally Minimal Trees

A. O. Ivanov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (480 kB) Citations (4)
References:
Abstract: It is proved that any locally minimal tree on Euclidean space can be “stabilized” (i.e., rendered shortest) by adding boundary vertices without changing the initial tree as a set in space. This result is useful for constructing examples of shortest trees.
Keywords: Steiner's problem, Steiner minimal tree, shortest tree, shortest network, framed network, Euclidean network, stabilization of a network.
Received: 25.07.2007
Revised: 26.09.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 4, Pages 483–492
DOI: https://doi.org/10.1134/S0001434609090247
Bibliographic databases:
UDC: 514.774.8+519.176
Language: Russian
Citation: A. O. Ivanov, A. A. Tuzhilin, “Stabilization of Locally Minimal Trees”, Mat. Zametki, 86:4 (2009), 512–524; Math. Notes, 86:4 (2009), 483–492
Citation in format AMSBIB
\Bibitem{IvaTuz09}
\by A.~O.~Ivanov, A.~A.~Tuzhilin
\paper Stabilization of Locally Minimal Trees
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 4
\pages 512--524
\mathnet{http://mi.mathnet.ru/mzm4023}
\crossref{https://doi.org/10.4213/mzm4023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591343}
\zmath{https://zbmath.org/?q=an:05656352}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 4
\pages 483--492
\crossref{https://doi.org/10.1134/S0001434609090247}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249127199}
Linking options:
  • https://www.mathnet.ru/eng/mzm4023
  • https://doi.org/10.4213/mzm4023
  • https://www.mathnet.ru/eng/mzm/v86/i4/p512
  • This publication is cited in the following 4 articles:
    1. I. L. Laut, “Correlation between the norm and the geometry of minimal networks”, Sb. Math., 208:5 (2017), 684–706  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Ivanov A.O. Tuzhilin A.A., “Minimal Networks: a Review”, Advances in Dynamical Systems and Control, Studies in Systems Decision and Control, 69, ed. Sadovnichiy V. Zgurovsky M., Springer Int Publishing Ag, 2016, 43–80  crossref  mathscinet  zmath  isi  scopus
    3. A. O. Ivanov, A. E. Mel'nikova, A. A. Tuzhilin, “Stabilization of a locally minimal forest”, Sb. Math., 205:3 (2014), 387–418  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. O. Ivanov, O. A. S'edina, A. A. Tuzhilin, “The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges”, Math. Notes, 91:3 (2012), 339–353  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :202
    References:55
    First page:12
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025