Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 443–453
DOI: https://doi.org/10.4213/mzm516
(Mi mzm516)
 

This article is cited in 5 scientific papers (total in 5 papers)

Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution

A. I. Sozutov
Full-text PDF (228 kB) Citations (5)
References:
Abstract: A proper subgroup $H$ of a group $G$ is said to be strongly embedded if $2\in\pi (H)$ and $2\notin\pi(H\cap H^g)$ ($\forall g\in G\setminus H$). An involution $i$ of $G$ is said to be finite if $|ii^g|<\infty$ ($\forall g\in G$). As is known, the structure of a (locally) finite group possessing a strongly embedded subgroup is determined by the theorems of Burnside and Brauer–Suzuki, provided that the Sylow 2-subgroup contains a unique involution. In this paper, sufficient conditions for the equality $m_2(G)=1$ are established, and two analogs of the Burnside and Brauer–Suzuki theorems for infinite groups $G$ possessing a strongly embedded subgroup and a finite involution are given.
Received: 24.03.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 401–410
DOI: https://doi.org/10.1023/A:1010291610395
Bibliographic databases:
UDC: 512.544
Language: Russian
Citation: A. I. Sozutov, “Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution”, Mat. Zametki, 69:3 (2001), 443–453; Math. Notes, 69:3 (2001), 401–410
Citation in format AMSBIB
\Bibitem{Soz01}
\by A.~I.~Sozutov
\paper Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 443--453
\mathnet{http://mi.mathnet.ru/mzm516}
\crossref{https://doi.org/10.4213/mzm516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846841}
\zmath{https://zbmath.org/?q=an:0998.20027}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 401--410
\crossref{https://doi.org/10.1023/A:1010291610395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200012}
Linking options:
  • https://www.mathnet.ru/eng/mzm516
  • https://doi.org/10.4213/mzm516
  • https://www.mathnet.ru/eng/mzm/v69/i3/p443
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :186
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024