Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 443–453
DOI: https://doi.org/10.4213/mzm516
(Mi mzm516)
 

This article is cited in 5 scientific papers (total in 5 papers)

Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution

A. I. Sozutov
Full-text PDF (228 kB) Citations (5)
References:
Abstract: A proper subgroup H of a group G is said to be strongly embedded if 2π(H) and 2π(HHg) (gGH). An involution i of G is said to be finite if |iig|< (gG). As is known, the structure of a (locally) finite group possessing a strongly embedded subgroup is determined by the theorems of Burnside and Brauer–Suzuki, provided that the Sylow 2-subgroup contains a unique involution. In this paper, sufficient conditions for the equality m2(G)=1 are established, and two analogs of the Burnside and Brauer–Suzuki theorems for infinite groups G possessing a strongly embedded subgroup and a finite involution are given.
Received: 24.03.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 401–410
DOI: https://doi.org/10.1023/A:1010291610395
Bibliographic databases:
UDC: 512.544
Language: Russian
Citation: A. I. Sozutov, “Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution”, Mat. Zametki, 69:3 (2001), 443–453; Math. Notes, 69:3 (2001), 401–410
Citation in format AMSBIB
\Bibitem{Soz01}
\by A.~I.~Sozutov
\paper Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 443--453
\mathnet{http://mi.mathnet.ru/mzm516}
\crossref{https://doi.org/10.4213/mzm516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846841}
\zmath{https://zbmath.org/?q=an:0998.20027}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 401--410
\crossref{https://doi.org/10.1023/A:1010291610395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200012}
Linking options:
  • https://www.mathnet.ru/eng/mzm516
  • https://doi.org/10.4213/mzm516
  • https://www.mathnet.ru/eng/mzm/v69/i3/p443
  • This publication is cited in the following 5 articles:
    1. Senashov V.I., “On Groups with a Strongly Imbedded Subgroup Having an Almost Layer-Finite Periodic Part”, Ukr. Math. J., 64:3 (2012), 433–440  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. V. I. Senashov, “O gruppakh Shunkova s silno vlozhennoi pochti sloino konechnoi podgruppoi”, Tr. IMM UrO RAN, 16, no. 3, 2010, 234–239  mathnet  elib
    3. V. I. Senashov, “On Shunkov Groups with a strongly embedded subgroup”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S210–S217  mathnet  crossref  isi  elib
    4. V. I. Senashov, A. I. Sozutov, V. P. Shunkov, “Investigation of groups with finiteness conditions in Krasnoyarsk”, Russian Math. Surveys, 60:5 (2005), 805–848  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. I. Sozutov, A. K. Shlepkin, “On Some Groups with Finite Involution Saturated with Finite Simple Groups”, Math. Notes, 72:3 (2002), 398–410  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :207
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025