Abstract:
A proper subgroup H of a group G is said to be strongly embedded if 2∈π(H) and 2∉π(H∩Hg) (∀g∈G∖H). An involution i of G is said to be finite if |iig|<∞ (∀g∈G). As is known, the structure of a (locally) finite group possessing a strongly embedded subgroup is determined by the theorems of Burnside and Brauer–Suzuki, provided that the Sylow 2-subgroup contains a unique involution. In this paper, sufficient conditions for the equality m2(G)=1 are established, and two analogs of the Burnside and Brauer–Suzuki theorems for infinite groups G possessing a strongly embedded subgroup and a finite involution are given.
Citation:
A. I. Sozutov, “Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution”, Mat. Zametki, 69:3 (2001), 443–453; Math. Notes, 69:3 (2001), 401–410
\Bibitem{Soz01}
\by A.~I.~Sozutov
\paper Two Criteria for Nonsimplicity of a Group Possessing a Strongly Embedded Subgroup and a Finite Involution
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 443--453
\mathnet{http://mi.mathnet.ru/mzm516}
\crossref{https://doi.org/10.4213/mzm516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846841}
\zmath{https://zbmath.org/?q=an:0998.20027}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 401--410
\crossref{https://doi.org/10.1023/A:1010291610395}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200012}
Linking options:
https://www.mathnet.ru/eng/mzm516
https://doi.org/10.4213/mzm516
https://www.mathnet.ru/eng/mzm/v69/i3/p443
This publication is cited in the following 5 articles:
Senashov V.I., “On Groups with a Strongly Imbedded Subgroup Having an Almost Layer-Finite Periodic Part”, Ukr. Math. J., 64:3 (2012), 433–440
V. I. Senashov, “O gruppakh Shunkova s silno vlozhennoi pochti sloino konechnoi podgruppoi”, Tr. IMM UrO RAN, 16, no. 3, 2010, 234–239
V. I. Senashov, “On Shunkov Groups with a strongly embedded subgroup”, Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S210–S217
V. I. Senashov, A. I. Sozutov, V. P. Shunkov, “Investigation of groups with finiteness conditions in Krasnoyarsk”, Russian Math. Surveys, 60:5 (2005), 805–848
A. I. Sozutov, A. K. Shlepkin, “On Some Groups with Finite Involution Saturated with Finite Simple Groups”, Math. Notes, 72:3 (2002), 398–410