Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 427–442
DOI: https://doi.org/10.4213/mzm515
(Mi mzm515)
 

This article is cited in 39 scientific papers (total in 39 papers)

Trace Formula for Sturm–Liouville Operators with Singular Potentials

A. M. Savchuka, A. A. Shkalikovab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Pohang University of Science and Technology
References:
Abstract: Suppose that $u(x)$ is a function of bounded variation on the closed interval $[0,\pi]$, continuous at the endpoints of this interval. Then the Sturm–Liouville operator $Sy=-y''+q(x)$ with Dirichlet boundary conditions and potential $q(x)=u'(x)$ is well defined. (The above relation is understood in the sense of distributions.) In the paper, we prove the trace formula
$$ \sum_{k=1}^\infty(\lambda_k^2-k^2+b_{2k}) =-\frac 18\sum h_j^2, $$
where the $\lambda_k$ are the eigenvalues of $S$ and $h_j$ are the jumps of the function $u(x)$. Moreover, in the case of local continuity of $q(x)$ at the points 0 and $\pi$ the series $\sum_{k=1}^\infty(\lambda_k-k^2)$ is summed by the mean-value method, and its sum is equal to
$$ -\frac{(q(0)+q(\pi))}4-\frac 18\sum h_j^2. $$
Received: 08.09.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 387–400
DOI: https://doi.org/10.1023/A:1010239626324
Bibliographic databases:
UDC: 517.9+517.43
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “Trace Formula for Sturm–Liouville Operators with Singular Potentials”, Mat. Zametki, 69:3 (2001), 427–442; Math. Notes, 69:3 (2001), 387–400
Citation in format AMSBIB
\Bibitem{SavShk01}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper Trace Formula for Sturm--Liouville Operators with Singular Potentials
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 427--442
\mathnet{http://mi.mathnet.ru/mzm515}
\crossref{https://doi.org/10.4213/mzm515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846840}
\zmath{https://zbmath.org/?q=an:1005.34077}
\elib{https://elibrary.ru/item.asp?id=582613}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 387--400
\crossref{https://doi.org/10.1023/A:1010239626324}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200011}
Linking options:
  • https://www.mathnet.ru/eng/mzm515
  • https://doi.org/10.4213/mzm515
  • https://www.mathnet.ru/eng/mzm/v69/i3/p427
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1260
    Full-text PDF :513
    References:90
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024