|
The Ingham Divisor Problem on the Set of Numbers without $k$h Powers
T. K. Ikonnikova Moscow State Pedagogical University
Abstract:
Suppose that $k$ and $l$ are integers such that $k\ge2$ and $l\ge2$ , $M_k$ is a set of numbers without $k$th powers, and $\tau(n)=\sum_{d\mid n}1$. In this paper, we obtain asymptotic estimates of the sums $\sum\tau(n)\tau(n+1)$ over $n\le x$, $n\in M_k$.
Received: 21.06.2000
Citation:
T. K. Ikonnikova, “The Ingham Divisor Problem on the Set of Numbers without $k$h Powers”, Mat. Zametki, 69:3 (2001), 383–401; Math. Notes, 69:3 (2001), 347–363
Linking options:
https://www.mathnet.ru/eng/mzm512https://doi.org/10.4213/mzm512 https://www.mathnet.ru/eng/mzm/v69/i3/p383
|
Statistics & downloads: |
Abstract page: | 378 | Full-text PDF : | 221 | References: | 85 | First page: | 2 |
|