Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 383–401
DOI: https://doi.org/10.4213/mzm512
(Mi mzm512)
 

The Ingham Divisor Problem on the Set of Numbers without $k$h Powers

T. K. Ikonnikova

Moscow State Pedagogical University
References:
Abstract: Suppose that $k$ and $l$ are integers such that $k\ge2$ and $l\ge2$ , $M_k$ is a set of numbers without $k$th powers, and $\tau(n)=\sum_{d\mid n}1$. In this paper, we obtain asymptotic estimates of the sums $\sum\tau(n)\tau(n+1)$ over $n\le x$, $n\in M_k$.
Received: 21.06.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 347–363
DOI: https://doi.org/10.1023/A:1010283408577
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: T. K. Ikonnikova, “The Ingham Divisor Problem on the Set of Numbers without $k$h Powers”, Mat. Zametki, 69:3 (2001), 383–401; Math. Notes, 69:3 (2001), 347–363
Citation in format AMSBIB
\Bibitem{Iko01}
\by T.~K.~Ikonnikova
\paper The Ingham Divisor Problem on the Set of Numbers without $k$h Powers
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 383--401
\mathnet{http://mi.mathnet.ru/mzm512}
\crossref{https://doi.org/10.4213/mzm512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846837}
\zmath{https://zbmath.org/?q=an:0996.11059}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 347--363
\crossref{https://doi.org/10.1023/A:1010283408577}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200008}
Linking options:
  • https://www.mathnet.ru/eng/mzm512
  • https://doi.org/10.4213/mzm512
  • https://www.mathnet.ru/eng/mzm/v69/i3/p383
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :221
    References:85
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024