Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 375–382
DOI: https://doi.org/10.4213/mzm511
(Mi mzm511)
 

This article is cited in 22 scientific papers (total in 22 papers)

Three-Dimensional Manifolds Defined by Coloring a Simple Polytope

I. V. Izmest'ev

M. V. Lomonosov Moscow State University
References:
Abstract: In the present paper we introduce and study a class of three-dimensional manifolds endowed with the action of the group $\mathbb Z_2^3$ whose orbit space is a simple convex polytope. These manifolds originate from three-dimensional polytopes whose faces allow a coloring into three colors with the help of the construction used for studying quasitoric manifolds. For such manifolds we prove the existence of an equivariant embedding into Euclidean space $\mathbb R^4$. We also describe the action on the set of operations of the equivariant connected sum and the equivariant Dehn surgery. We prove that any such manifold can be obtained from a finitely many three-dimensional tori with the canonical action of the group $\mathbb Z_2^3$ by using these operations.
Received: 19.06.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 340–346
DOI: https://doi.org/10.1023/A:1010231424507
Bibliographic databases:
UDC: 515.162.3+515.164.8
Language: Russian
Citation: I. V. Izmest'ev, “Three-Dimensional Manifolds Defined by Coloring a Simple Polytope”, Mat. Zametki, 69:3 (2001), 375–382; Math. Notes, 69:3 (2001), 340–346
Citation in format AMSBIB
\Bibitem{Izm01}
\by I.~V.~Izmest'ev
\paper Three-Dimensional Manifolds Defined by Coloring a Simple Polytope
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 375--382
\mathnet{http://mi.mathnet.ru/mzm511}
\crossref{https://doi.org/10.4213/mzm511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846836}
\zmath{https://zbmath.org/?q=an:0991.57016}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 340--346
\crossref{https://doi.org/10.1023/A:1010231424507}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200007}
Linking options:
  • https://www.mathnet.ru/eng/mzm511
  • https://doi.org/10.4213/mzm511
  • https://www.mathnet.ru/eng/mzm/v69/i3/p375
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :252
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024