Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 69, Issue 3, Pages 375–382
DOI: https://doi.org/10.4213/mzm511
(Mi mzm511)
 

This article is cited in 23 scientific papers (total in 23 papers)

Three-Dimensional Manifolds Defined by Coloring a Simple Polytope

I. V. Izmest'ev

M. V. Lomonosov Moscow State University
References:
Abstract: In the present paper we introduce and study a class of three-dimensional manifolds endowed with the action of the group Z32 whose orbit space is a simple convex polytope. These manifolds originate from three-dimensional polytopes whose faces allow a coloring into three colors with the help of the construction used for studying quasitoric manifolds. For such manifolds we prove the existence of an equivariant embedding into Euclidean space R4. We also describe the action on the set of operations of the equivariant connected sum and the equivariant Dehn surgery. We prove that any such manifold can be obtained from a finitely many three-dimensional tori with the canonical action of the group Z32 by using these operations.
Received: 19.06.2000
English version:
Mathematical Notes, 2001, Volume 69, Issue 3, Pages 340–346
DOI: https://doi.org/10.1023/A:1010231424507
Bibliographic databases:
UDC: 515.162.3+515.164.8
Language: Russian
Citation: I. V. Izmest'ev, “Three-Dimensional Manifolds Defined by Coloring a Simple Polytope”, Mat. Zametki, 69:3 (2001), 375–382; Math. Notes, 69:3 (2001), 340–346
Citation in format AMSBIB
\Bibitem{Izm01}
\by I.~V.~Izmest'ev
\paper Three-Dimensional Manifolds Defined by Coloring a Simple Polytope
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 375--382
\mathnet{http://mi.mathnet.ru/mzm511}
\crossref{https://doi.org/10.4213/mzm511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846836}
\zmath{https://zbmath.org/?q=an:0991.57016}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 340--346
\crossref{https://doi.org/10.1023/A:1010231424507}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200007}
Linking options:
  • https://www.mathnet.ru/eng/mzm511
  • https://doi.org/10.4213/mzm511
  • https://www.mathnet.ru/eng/mzm/v69/i3/p375
  • This publication is cited in the following 23 articles:
    1. Nikolai Yu. Erokhovets, “Manifolds Realized as Orbit Spaces of Non-free $\mathbb Z_2^k$-Actions on Real Moment–Angle Manifolds”, Proc. Steklov Inst. Math., 326 (2024), 177–218  mathnet  crossref  crossref  mathscinet
    2. Chu M., Kolpakov A., “A Hyperbolic Counterpart to Rokhlin'S Cobordism Theorem”, Int. Math. Res. Notices, 2022:4 (2022), rnaa158, 2460–2483  crossref  mathscinet  isi  scopus
    3. Nikolai Yu. Erokhovets, “Cohomological Rigidity of Families of Manifolds Associated with Ideal Right-Angled Hyperbolic 3-Polytopes”, Proc. Steklov Inst. Math., 318 (2022), 90–125  mathnet  crossref  crossref  mathscinet
    4. Ma J., Zheng F., “Orientable Hyperbolic 4-Manifolds Over the 120-Cell”, Math. Comput., 90:331 (2021), 2463–2501  crossref  mathscinet  isi  scopus
    5. N. Yu. Erokhovets, “Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions”, Proc. Steklov Inst. Math., 305 (2019), 78–134  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Zhi Lü, Wei Wang, Li Yu, Trends in Mathematics, Algebraic Topology and Related Topics, 2019, 197  crossref
    7. Chen B., Lu Zh., Yu L., “Self-Dual Binary Codes From Small Covers and Simple Polytopes”, Algebr. Geom. Topol., 18:5 (2018), 2729–2767  crossref  mathscinet  zmath  isi  scopus
    8. A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Kuroki Sh., “An Orlik-Raymond Type Classification of Simply Connected 6-Dimensional Torus Manifolds With Vanishing Odd-Degree Cohomology”, Pac. J. Math., 280:1 (2016), 89–114  crossref  mathscinet  zmath  isi  scopus
    10. Kuroki Sh., Lu Zh., “Projective bundles over small covers and the bundle triviality problem”, Forum Math., 28:4 (2016), 761–781  crossref  mathscinet  zmath  isi  elib  scopus
    11. Ayzenberg A., “Buchstaber Invariant, Minimal Non-Simplices and Related”, Osaka J. Math., 53:2 (2016), 377–395  mathscinet  zmath  isi  elib
    12. Kolpakov A., Martelli B., Tschantz S., “Some Hyperbolic Three-Manifolds That Bound Geometrically”, Proc. Amer. Math. Soc., 143:9 (2015), 4103–4111  crossref  mathscinet  zmath  isi  elib  scopus
    13. N. Yu. Erokhovets, “Buchstaber invariant theory of simplicial complexes and convex polytopes”, Proc. Steklov Inst. Math., 286 (2014), 128–187  mathnet  crossref  crossref  isi  elib  elib
    14. Nishimura Ya., “Combinatorial Constructions of Three-Dimensional Small Covers”, Pac. J. Math., 256:1 (2012), 177–199  crossref  mathscinet  zmath  isi  scopus
    15. A. A. Aizenberg, “Svyaz invariantov Bukhshtabera i obobschennykh khromaticheskikh chisel”, Dalnevost. matem. zhurn., 11:2 (2011), 113–139  mathnet
    16. Cao X., Lue Zh., “Cohomological Rigidity and the Number of Homeomorphism Types for Small Covers Over Prisms”, Topology Appl., 158:6 (2011), 813–834  crossref  mathscinet  zmath  isi  elib  scopus
    17. Lue Zh., Yu L., “Topological Types of 3-Dimensional Small Covers”, Forum Math., 23:2 (2011), 245–284  crossref  mathscinet  zmath  isi  scopus
    18. Kuroki Sh., “Operations on 3-Dimensional Small Covers”, Chin. Ann. Math. Ser. B, 31:3 (2010), 393–410  crossref  mathscinet  zmath  isi  elib  scopus
    19. Zivaljevic, RT, “Combinatorial Groupoids, Cubical Complexes, and the Lovasz Conjecture”, Discrete & Computational Geometry, 41:1 (2009), 135  crossref  mathscinet  zmath  isi  scopus
    20. N. Yu. Erokhovets, “Buchstaber invariant of simple polytopes”, Russian Math. Surveys, 63:5 (2008), 962–964  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:461
    Full-text PDF :260
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025