Abstract:
We study the behavior of the constant C(s) as s→∞ arising in the estimate of the number of relative minima of s-dimensional integer lattices Γ via the logarithm log2N raised to the s−1th power, where N=D(Γ) is the determinant of Γ.
Citation:
M. O. Avdeeva, V. A. Bykovskii, “Upper and Lower Bounds for the Voronoi–Minkowski constant”, Mat. Zametki, 87:4 (2010), 483–491; Math. Notes, 87:4 (2010), 457–465
This publication is cited in the following 2 articles:
A. A. Illarionov, “The average number of relative minima of three-dimensional integer lattices of a given determinant”, Izv. Math., 76:3 (2012), 535–562
A. A. Illarionov, Yu. A. Soika, “O kolichestve otnositelnykh minimumov tselochislennykh reshetok”, Dalnevost. matem. zhurn., 11:2 (2011), 149–154