|
On the Convergence in Mean of Trigonometric Fourier Series
A. S. Belov Ivanovo State University
Abstract:
We prove the sharpness of Zygmund's theorem, which asserts that if a $2\pi$-periodic function $f$ belongs to $L\ln^+ L$, then its Fourier series is convergent in mean.
Keywords:
trigonometric Fourier series, $2\pi$-periodic function, convergence in mean, Zygmund's theorem, Abel transformation, Dirichlet kernel.
Received: 14.01.2009
Citation:
A. S. Belov, “On the Convergence in Mean of Trigonometric Fourier Series”, Mat. Zametki, 87:4 (2010), 492–501; Math. Notes, 87:4 (2010), 466–474
Linking options:
https://www.mathnet.ru/eng/mzm8368https://doi.org/10.4213/mzm8368 https://www.mathnet.ru/eng/mzm/v87/i4/p492
|
Statistics & downloads: |
Abstract page: | 667 | Full-text PDF : | 232 | References: | 62 | First page: | 45 |
|