Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 5, Pages 667–682
DOI: https://doi.org/10.4213/mzm4722
(Mi mzm4722)
 

This article is cited in 35 scientific papers (total in 35 papers)

Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations

A. A. Zlotnik

Russian State Social University
References:
Abstract: We establish that the quasihydrodynamic system of equations of motion of a perfect polytropic gas is parabolic (in the sense of Petrovskii). We study the stability of small perturbations on a constant background and, for the Cauchy problem and the initial boundary-value problems for the corresponding linearized system, we obtain uniform (on the infinite time interval) estimates of relative perturbations. The corresponding results are also derived in the barotropic case for a general equation of state.
Keywords: quasihydrodynamic system of equations, Petrovskii parabolic system, stability of small perturbations, Cauchy problem, perfect polytropic gas, barotropic system.
Received: 27.07.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 5, Pages 610–623
DOI: https://doi.org/10.1134/S0001434608050040
Bibliographic databases:
UDC: 517.958:533.7
Language: Russian
Citation: A. A. Zlotnik, “Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations”, Mat. Zametki, 83:5 (2008), 667–682; Math. Notes, 83:5 (2008), 610–623
Citation in format AMSBIB
\Bibitem{Zlo08}
\by A.~A.~Zlotnik
\paper Parabolicity of a Quasihydrodynamic System of Equations and the Stability of its Small Perturbations
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 5
\pages 667--682
\mathnet{http://mi.mathnet.ru/mzm4722}
\crossref{https://doi.org/10.4213/mzm4722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2451356}
\zmath{https://zbmath.org/?q=an:1160.35326}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 5
\pages 610--623
\crossref{https://doi.org/10.1134/S0001434608050040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257399900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46749143330}
Linking options:
  • https://www.mathnet.ru/eng/mzm4722
  • https://doi.org/10.4213/mzm4722
  • https://www.mathnet.ru/eng/mzm/v83/i5/p667
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:551
    Full-text PDF :219
    References:83
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024