|
Structural Properties in Classes of Holomorphic Functions on the Half-Plane
D. A. Efimov M. V. Lomonosov Moscow State University
Abstract:
Diverse structural properties for classes of holomorphic functions (defined by means of maximal functions) are proved, including the Riesz convergence theorem and a factorization theorem.
Keywords:
holomorphic function, vertical maximal function, Riesz convergence theorem, Krylov function class, subharmonic function, harmonic majorant, Banach space.
Received: 01.11.2006
Citation:
D. A. Efimov, “Structural Properties in Classes of Holomorphic Functions on the Half-Plane”, Mat. Zametki, 83:5 (2008), 661–666; Math. Notes, 83:5 (2008), 604–609
Linking options:
https://www.mathnet.ru/eng/mzm4713https://doi.org/10.4213/mzm4713 https://www.mathnet.ru/eng/mzm/v83/i5/p661
|
Statistics & downloads: |
Abstract page: | 290 | Full-text PDF : | 181 | References: | 49 | First page: | 2 |
|