Abstract:
Problems concerning the extension of the Baer criterion for injectivity and the embedding theorem of an arbitrary module over a ring into an injective module to the case of semirings are treated. It is proved that a semiring SS satisfies the Baer criterion and every SS-semimodule can be embedded in an injective semimodule if and only if SS is a ring.
Keywords:
Baer criterion for injectivity, embedding of modules, semiring, semimodule, semigroup, commutative monoid.
Citation:
S. N. Il'in, “On the Applicability to Semirings of Two Theorems from the Theory of Rings and Modules”, Mat. Zametki, 83:4 (2008), 536–544; Math. Notes, 83:4 (2008), 492–499
\Bibitem{Ili08}
\by S.~N.~Il'in
\paper On the Applicability to Semirings of Two Theorems from the Theory of Rings and Modules
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 4
\pages 536--544
\mathnet{http://mi.mathnet.ru/mzm4574}
\crossref{https://doi.org/10.4213/mzm4574}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431619}
\zmath{https://zbmath.org/?q=an:1162.16032}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 4
\pages 492--499
\crossref{https://doi.org/10.1134/S000143460803022X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749094982}
Linking options:
https://www.mathnet.ru/eng/mzm4574
https://doi.org/10.4213/mzm4574
https://www.mathnet.ru/eng/mzm/v83/i4/p536
This publication is cited in the following 13 articles:
Katsov Y., “Axiomatizability of Homological Classes of Semimodules Over Semirings”, J. Algebra. Appl., 19:10 (2020), 2050182
S. N. Il'in, “On homological classification of semirings”, J. Math. Sci. (N. Y.), 256:2 (2021), 125–142
Il'in S.N., Katsov Y., Nam T.G., “Toward homological structure theory of semimodules: On semirings all of whose cyclic semimodules are projective”, J. Algebra, 476 (2017), 238–266
Abuhlail J.Y. Il'in S.N. Katsov Y. Nam T.G., “on V-Semirings and Semirings All of Whose Cyclic Semimodules Are Injective”, Commun. Algebr., 43:11 (2015), 4632–4654
Il'in S.N., Katsov Y., “On Serre's Problem on Projective Semimodules Over Polynomial Semirings”, Commun. Algebr., 42:9 (2014), 4021–4032
Il'in S.N., “On Projective Covers of Semimodules and Perfect Semirings”, J. Algebra. Appl., 13:6 (2014), 1450014
Abuhlail J.Y., “Some Remarks on Tensor Products and Flatness of Semimodules”, Semigr. Forum, 88:3 (2014), 732–738
S. N. Il'in, “Semirings satisfying the Baer criterion”, Russian Math. (Iz. VUZ), 57:3 (2013), 26–31
A. N. Abyzov, Yu. A. Alpin, N. A. Koreshkov, M. F. Nasrutdinov, S. N. Tronin, “Algebraicheskie issledovaniya v Kazanskom universitete ot V. V. Morozova do nashikh dnei”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2012, 44–59