Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 4, Pages 545–551
DOI: https://doi.org/10.4213/mzm3770
(Mi mzm3770)
 

This article is cited in 26 scientific papers (total in 26 papers)

On Families of Complex Lines Sufficient for Holomorphic Extension

A. M. Kytmanov, S. G. Myslivets

Krasnoyarsk State University
References:
Abstract: It is shown that the set LΓ of all complex lines passing through a germ of a generating manifold Γ is sufficient for any continuous function f defined on the boundary of a bounded domain DCn with connected smooth boundary and having the holomorphic one-dimensional extension property along all lines from LΓ to admit a holomorphic extension to D as a function of many complex variables.
Keywords: holomorphic extension property, family of complex lines, Hartogs' theorem, Bochner–Martinelli integral, Sard's theorem, Cauchy–Riemann condition.
Received: 03.07.2006
Revised: 26.03.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 4, Pages 500–505
DOI: https://doi.org/10.1134/S0001434608030231
Bibliographic databases:
UDC: 517.55
Language: Russian
Citation: A. M. Kytmanov, S. G. Myslivets, “On Families of Complex Lines Sufficient for Holomorphic Extension”, Mat. Zametki, 83:4 (2008), 545–551; Math. Notes, 83:4 (2008), 500–505
Citation in format AMSBIB
\Bibitem{KytMys08}
\by A.~M.~Kytmanov, S.~G.~Myslivets
\paper On Families of Complex Lines Sufficient for Holomorphic Extension
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 4
\pages 545--551
\mathnet{http://mi.mathnet.ru/mzm3770}
\crossref{https://doi.org/10.4213/mzm3770}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431620}
\zmath{https://zbmath.org/?q=an:1155.32006}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 4
\pages 500--505
\crossref{https://doi.org/10.1134/S0001434608030231}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255998600023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749085315}
Linking options:
  • https://www.mathnet.ru/eng/mzm3770
  • https://doi.org/10.4213/mzm3770
  • https://www.mathnet.ru/eng/mzm/v83/i4/p545
  • This publication is cited in the following 26 articles:
    1. Bakhodir A. Shoimkhulov, Baymurat J. Kutlimuratov, “Some classes of sets sufficient for holomorphic continuation of integrable functions”, Zhurn. SFU. Ser. Matem. i fiz., 17:4 (2024), 506–512  mathnet
    2. G. Khudayberganov, “Multidimensional Boundary Morera Theorems in Matrix Domains”, J Math Sci, 284:2 (2024), 216  crossref
    3. A. M. Kytmanov, S. G. Myslivets, “O nekotorykh mnozhestvakh, dostatochnykh dlya golomorfnogo prodolzheniya funktsii s obobschennym granichnym svoistvom Morera”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:3 (2023), 483–496  mathnet  crossref
    4. Simona G. Myslivets, “On the multidimensional boundary analogue of the Morera theorem”, Zhurn. SFU. Ser. Matem. i fiz., 15:1 (2022), 29–45  mathnet  crossref  mathscinet
    5. A. M. Kytmanov, S. G. Myslivets, “On functions with the boundary Morera property in domains with piecewise-smooth boundary”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:1 (2021), 50–58  mathnet  crossref
    6. A. M. Kytmanov, S. G. Myslivets, “On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain”, Ufa Math. J., 12:3 (2020), 44–49  mathnet  crossref  isi
    7. Tryfonos C., Vidras A., “Boundary Behavior of Functions Representable By Weighted Koppelman Type Integral and Related Hartogs Phenomenon”, Comput. Methods Funct. Theory, 20:1 (2020), 5–38  crossref  mathscinet  isi
    8. Simona G. Myslivets, “Functions with the one-dimensional holomorphic extension property”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 439–443  mathnet  crossref
    9. Kytmanov A.M., Myslivets S.G., “On Functions With One-Dimensional Holomorphic Extension Property in Circular Domains”, Math. Nachr., 292:6 (2019), 1321–1332  crossref  mathscinet  isi  scopus
    10. Alexander M. Kytmanov, Simona G. Myslivets, “Multidimensional boundary analog of the Hartogs theorem in circular domains”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 79–90  mathnet  crossref
    11. Bairambay Otemuratov, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 109  crossref
    12. A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex straight lines in an n-circular domain”, Siberian Math. J., 57:4 (2016), 618–631  mathnet  crossref  crossref  isi  elib  elib
    13. Kytmanov A.M., Myslivets S.G., “An Analog of the Hartogs Theorem in a Ball of Cn”, Math. Nachr., 288:2-3 (2015), 224–234  crossref  mathscinet  zmath  isi  scopus
    14. Alexander M. Kytmanov, Simona G. Myslivets, “Holomorphic extension of continuous functions along finite families of complex lines in a ball”, Zhurn. SFU. Ser. Matem. i fiz., 8:3 (2015), 291–302  mathnet  crossref
    15. Alexander M. Kytmanov, Simona G. Myslivets, Multidimensional Integral Representations, 2015, 119  crossref
    16. V. I. Kuzovatov, A. M. Kytmanov, “On a boundary analog of the Forelli theorem”, Siberian Math. J., 54:5 (2013), 841–856  mathnet  crossref  mathscinet  isi
    17. Kytmanov A.M., Myslivets S.G., “On the Families of Complex Lines Sufficient for Holomorphic Continuation of Functions Defined on a Domain Boundary”, Complex Analysis and Dynamical Systems V, Contemporary Mathematics, 591, eds. Agranovsky M., BenArtzi M., Galloway G., Karp L., Mazya V., Reich S., Shoikhet D., Weinstein G., Zal, Amer Mathematical Soc, 2013, 159–170  crossref  mathscinet  zmath  isi
    18. Bairambai P. Otemuratov, “Nekotorye mnozhestva kompleksnykh pryamykh minimalnoi razmernosti, dostatochnye dlya golomorfnogo prodolzheniya integriruemykh funktsii”, Zhurn. SFU. Ser. Matem. i fiz., 5:1 (2012), 97–105  mathnet
    19. Aleksandr M. Kytmanov, Simona G. Myslivets, “O semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya funktsii, zadannykh na granitse oblasti”, Zhurn. SFU. Ser. Matem. i fiz., 5:2 (2012), 213–222  mathnet
    20. V. I. Kuzovatov, “O nekotorykh semeistvakh kompleksnykh pryamykh, dostatochnykh dlya golomorfnogo prodolzheniya funktsii”, Ufimsk. matem. zhurn., 4:1 (2012), 107–121  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :189
    References:65
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025