Abstract:
It is shown that the set LΓ of all complex lines passing through a germ of a generating manifold Γ is sufficient for any continuous function f defined on the boundary of a bounded domain D⊂Cn with connected smooth boundary and having the holomorphic one-dimensional extension property along all lines from LΓ to admit a holomorphic extension to D as a function of many complex variables.
Keywords:
holomorphic extension property, family of complex lines, Hartogs' theorem, Bochner–Martinelli integral, Sard's theorem, Cauchy–Riemann condition.
Citation:
A. M. Kytmanov, S. G. Myslivets, “On Families of Complex Lines Sufficient for Holomorphic Extension”, Mat. Zametki, 83:4 (2008), 545–551; Math. Notes, 83:4 (2008), 500–505
This publication is cited in the following 26 articles:
Bakhodir A. Shoimkhulov, Baymurat J. Kutlimuratov, “Some classes of sets sufficient for holomorphic continuation of integrable functions”, Zhurn. SFU. Ser. Matem. i fiz., 17:4 (2024), 506–512
G. Khudayberganov, “Multidimensional Boundary Morera Theorems in Matrix Domains”, J Math Sci, 284:2 (2024), 216
A. M. Kytmanov, S. G. Myslivets, “O nekotorykh mnozhestvakh, dostatochnykh dlya golomorfnogo prodolzheniya funktsii s obobschennym granichnym svoistvom Morera”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:3 (2023), 483–496
Simona G. Myslivets, “On the multidimensional boundary analogue of the Morera theorem”, Zhurn. SFU. Ser. Matem. i fiz., 15:1 (2022), 29–45
A. M. Kytmanov, S. G. Myslivets, “On functions with the boundary Morera property in domains with piecewise-smooth boundary”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:1 (2021), 50–58
A. M. Kytmanov, S. G. Myslivets, “On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain”, Ufa Math. J., 12:3 (2020), 44–49
Tryfonos C., Vidras A., “Boundary Behavior of Functions Representable By Weighted Koppelman Type Integral and Related Hartogs Phenomenon”, Comput. Methods Funct. Theory, 20:1 (2020), 5–38
Simona G. Myslivets, “Functions with the one-dimensional holomorphic extension property”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 439–443
Kytmanov A.M., Myslivets S.G., “On Functions With One-Dimensional Holomorphic Extension Property in Circular Domains”, Math. Nachr., 292:6 (2019), 1321–1332
Alexander M. Kytmanov, Simona G. Myslivets, “Multidimensional boundary analog of the Hartogs theorem in circular domains”, Zhurn. SFU. Ser. Matem. i fiz., 11:1 (2018), 79–90
Bairambay Otemuratov, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 109
A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex straight lines in an n-circular domain”, Siberian Math. J., 57:4 (2016), 618–631
Kytmanov A.M., Myslivets S.G., “An Analog of the Hartogs Theorem in a Ball of Cn”, Math. Nachr., 288:2-3 (2015), 224–234
Alexander M. Kytmanov, Simona G. Myslivets, “Holomorphic extension of continuous functions along finite families of complex lines in a ball”, Zhurn. SFU. Ser. Matem. i fiz., 8:3 (2015), 291–302
Alexander M. Kytmanov, Simona G. Myslivets, Multidimensional Integral Representations, 2015, 119
V. I. Kuzovatov, A. M. Kytmanov, “On a boundary analog of the Forelli theorem”, Siberian Math. J., 54:5 (2013), 841–856
Kytmanov A.M., Myslivets S.G., “On the Families of Complex Lines Sufficient for Holomorphic Continuation of Functions Defined on a Domain Boundary”, Complex Analysis and Dynamical Systems V, Contemporary Mathematics, 591, eds. Agranovsky M., BenArtzi M., Galloway G., Karp L., Mazya V., Reich S., Shoikhet D., Weinstein G., Zal, Amer Mathematical Soc, 2013, 159–170