Abstract:
Using the Fourier–Laplace transformation of functionals, we give a description of the spaces dual to the spaces of rapidly decreasing infinitely differentiable functions on an unbounded closed convex set in $\mathbb R^n$.
Citation:
I. Kh. Musin, P. V. Fedotova, “A Theorem of Paley–Wiener Type for Ultradistributions”, Mat. Zametki, 85:6 (2009), 894–914; Math. Notes, 85:6 (2009), 848–867
This publication is cited in the following 4 articles:
I. Kh. Musin, A. I. Rakhimova, “Paley–Wiener–Schwartz Type Theorem for Ultradistributions on an Unbounded Closed Convex Set”, J Math Sci, 259:2 (2021), 210
I. Kh. Musin, “On Fourier–Laplace transform of a class of generalized functions”, Ufa Math. J., 12:4 (2020), 78–89
Musin I.Kh., Yakovleva P.V., “On a space of smooth functions on a convex unbounded set in $\mathbb R^n$ admitting holomorphic extension in $\mathbb C^n$”, Cent. Eur. J. Math., 10:2 (2012), 665–692
I. Kh. Musin, P. V. Fedotova, “O klasse beskonechno differentsiruemykh funktsii na neogranichennom vypuklom mnozhestve v $\mathbb R^n$, dopuskayuschikh golomorfnoe prodolzhenie v $\mathbb C^n$”, Ufimsk. matem. zhurn., 1:2 (2009), 75–100