Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 6, Pages 915–926
DOI: https://doi.org/10.4213/mzm3913
(Mi mzm3913)
 

This article is cited in 2 scientific papers (total in 2 papers)

Contractibility of Half-Spaces of Partial Convexity

V. G. Naidenko

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus
Full-text PDF (449 kB) Citations (2)
References:
Abstract: The Fink–Wood problem on the contractibility of half-spaces of partial convexity is studied. It is proved that there exists a connected non-simply-connected half-space of orthoconvexity in the three-dimensional space, which disproves the Fink–Wood conjecture in the general case. In a special case, it is proved that, if the set of directions of partial convexity contains a basis of the linear $n$-dimensional space, then all directed half-spaces of partial convexity are contractible.
Keywords: partial convexity, orthoconvexity, half-space of partial convexity, directed half-space, Fink–Wood problem.
Received: 21.06.2007
Revised: 11.02.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 6, Pages 868–876
DOI: https://doi.org/10.1134/S0001434609050277
Bibliographic databases:
UDC: 514+681.3
Language: Russian
Citation: V. G. Naidenko, “Contractibility of Half-Spaces of Partial Convexity”, Mat. Zametki, 85:6 (2009), 915–926; Math. Notes, 85:6 (2009), 868–876
Citation in format AMSBIB
\Bibitem{Nai09}
\by V.~G.~Naidenko
\paper Contractibility of Half-Spaces of Partial Convexity
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 6
\pages 915--926
\mathnet{http://mi.mathnet.ru/mzm3913}
\crossref{https://doi.org/10.4213/mzm3913}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2572842}
\zmath{https://zbmath.org/?q=an:1183.52005}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 6
\pages 868--876
\crossref{https://doi.org/10.1134/S0001434609050277}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267684500027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949126884}
Linking options:
  • https://www.mathnet.ru/eng/mzm3913
  • https://doi.org/10.4213/mzm3913
  • https://www.mathnet.ru/eng/mzm/v85/i6/p915
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025