Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 1, Pages 107–118
DOI: https://doi.org/10.4213/mzm4338
(Mi mzm4338)
 

This article is cited in 17 scientific papers (total in 17 papers)

Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations

S. Ya. Startsev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We propose a generalization of the cascade method of Laplace integration to the case of linear hyperbolic systems of equations. On the basis of this generalization, we prove that the system of equations with vanishing product of Laplace invariants has a complete set of solutions depending on arbitrary functions.
Keywords: linear hyperbolic equation, cascade integration method, Laplace integration, Laplace invariant, differential substitution.
Received: 29.04.2005
Revised: 19.04.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 1, Pages 97–106
DOI: https://doi.org/10.1134/S0001434608010124
Bibliographic databases:
UDC: 517.956.32
Language: Russian
Citation: S. Ya. Startsev, “Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations”, Mat. Zametki, 83:1 (2008), 107–118; Math. Notes, 83:1 (2008), 97–106
Citation in format AMSBIB
\Bibitem{Sta08}
\by S.~Ya.~Startsev
\paper Cascade Method of Laplace Integration for Linear Hyperbolic Systems of Equations
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 1
\pages 107--118
\mathnet{http://mi.mathnet.ru/mzm4338}
\crossref{https://doi.org/10.4213/mzm4338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400003}
\zmath{https://zbmath.org/?q=an:1149.35305}
\elib{https://elibrary.ru/item.asp?id=10019484}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 1
\pages 97--106
\crossref{https://doi.org/10.1134/S0001434608010124}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300012}
\elib{https://elibrary.ru/item.asp?id=13585683}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849102921}
Linking options:
  • https://www.mathnet.ru/eng/mzm4338
  • https://doi.org/10.4213/mzm4338
  • https://www.mathnet.ru/eng/mzm/v83/i1/p107
  • This publication is cited in the following 17 articles:
    1. I. V. Rakhmelevich, “Ob invariantakh Laplasa dvumernykh nelineinykh uravnenii vtorogo poryadka s odnorodnym polinomom”, Izv. vuzov. Matem., 2024, no. 8, 55–64  mathnet  crossref
    2. I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854  crossref
    3. I. V. Rakhmelevich, “On Laplace Invariants of Two-Dimensional Nonlinear Equations of the Second Order with Homogeneous Polynomial”, Russ Math., 68:8 (2024), 47  crossref
    4. E. A. Sozontova, “Usloviya suschestvovaniya i edinstvennosti resheniya zadachi Gursa dlya sistemy uravnenii s dominiruyuschimi chastnymi proizvodnymi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:2 (2023), 375–383  mathnet  crossref
    5. M. N. Kuznetsova, “On nonlinear hyperbolic systems related by Bäcklund transforms”, Ufa Math. J., 15:3 (2023), 80–87  mathnet  crossref
    6. S. Ya. Startsev, “Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants”, Ufa Math. J., 10:4 (2018), 103–110  mathnet  crossref  isi
    7. S. Ya. Startsev, “Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations”, J. Math. Sci. (N. Y.), 252:2 (2021), 232–241  mathnet  crossref  mathscinet
    8. S. Ya. Startsev, “On differential substitutions for evolution systems”, Ufa Math. J., 9:4 (2017), 108–113  mathnet  crossref  isi  elib
    9. Shemyakova E., “Laplace transformations as the only degenerate Darboux transformations of first order”, Program. Comput. Softw., 38:2 (2012), 105–108  crossref  mathscinet  zmath  isi  elib  elib  scopus
    10. E. I. Ganzha, “Euler Integrals and Multi-Integrals of Linear Partial Differential Equations”, Math. Notes, 89:1 (2011), 37–50  mathnet  crossref  crossref  mathscinet  isi
    11. Shemyakova E.S., “X- and Y-invariants of partial differential operators in the plane”, Program. Comput. Softw., 37:4 (2011), 192–196  crossref  mathscinet  zmath  isi  elib  elib  scopus
    12. Kaptsov O.V., “Ideals of differential operators and transformations of linear partial differential equations”, Program. Comput. Softw., 36:2 (2010), 97–102  crossref  mathscinet  zmath  zmath  isi  elib  elib  scopus
    13. Ekaterina Shemyakova, “Refinement of Two-Factor Factorizations of a Linear Partial Differential Operator of Arbitrary Order and Dimension”, Math.Comput.Sci., 4:2-3 (2010), 223  crossref
    14. S. P. Tsarev, E. S. Shemyakova, “Differential Transformations of Parabolic Second-Order Operators in the Plane”, Proc. Steklov Inst. Math., 266 (2009), 219–227  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    15. A. V. Zhiber, Yu. G. Mikhailova, “Algoritm postroeniya obschego resheniya $n$-komponentnoi giperbolicheskoi sistemy uravnenii s nulevymi invariantami Laplasa i kraevye zadachi”, Ufimsk. matem. zhurn., 1:3 (2009), 28–45  mathnet  zmath  elib
    16. Shemyakova E., “Multiple factorizations of bivariate linear partial differential operators”, Computer algebra in scientific computing, Lecture Notes in Computer Science, 5743, eds. Gerdt V., Mayr E., Vorozhtsov E., Springer-Verlag, Berlin, 2009, 299–309  crossref  mathscinet  zmath  adsnasa  isi  scopus
    17. Shemyakova E., “Invariant properties of third-order non-hyperbolic linear partial differential operators”, Intelligent computer mathematics, Lecture Notes in Computer Science, 5625, eds. Carette J., Dixon L., Coen C., Watt S., Springer-Verlag, Berlin, 2009, 154–169  crossref  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:849
    Full-text PDF :418
    References:91
    First page:12
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025