Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 1, Pages 95–106
DOI: https://doi.org/10.4213/mzm3832
(Mi mzm3832)
 

This article is cited in 1 scientific paper (total in 1 paper)

Two Orientations

E. G. Sklyarenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (513 kB) Citations (1)
References:
Abstract: All trivializations of an Euclidean line bundle $\pi\colon\mathscr R\to B$ over a connected base $B$ split in two classes which can be naturally named orientations of $\pi$. In the case of an orienting sheaf of a manifold or a vector bundle, they admit a natural interpretation as orientations of these objects. This approach establishes an extension of standard classical constructions to all manifolds and vector bundles independently of orientability restrictions in the usual sense.
Keywords: orientation, orientability, vector bundle, line bundle, structure group, orienting sheaf, twofold covering, cohomology class.
Received: 13.03.2007
English version:
Mathematical Notes, 2008, Volume 83, Issue 1, Pages 88–96
DOI: https://doi.org/10.1134/S0001434608010112
Bibliographic databases:
UDC: 515.145.25+515.163+515.164.13
Language: Russian
Citation: E. G. Sklyarenko, “Two Orientations”, Mat. Zametki, 83:1 (2008), 95–106; Math. Notes, 83:1 (2008), 88–96
Citation in format AMSBIB
\Bibitem{Skl08}
\by E.~G.~Sklyarenko
\paper Two Orientations
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 1
\pages 95--106
\mathnet{http://mi.mathnet.ru/mzm3832}
\crossref{https://doi.org/10.4213/mzm3832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400002}
\zmath{https://zbmath.org/?q=an:1149.57038}
\elib{https://elibrary.ru/item.asp?id=10019483}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 1
\pages 88--96
\crossref{https://doi.org/10.1134/S0001434608010112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300011}
\elib{https://elibrary.ru/item.asp?id=13589481}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849117507}
Linking options:
  • https://www.mathnet.ru/eng/mzm3832
  • https://doi.org/10.4213/mzm3832
  • https://www.mathnet.ru/eng/mzm/v83/i1/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:505
    Full-text PDF :229
    References:91
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024