Abstract:
In the present paper, a series of problems connecting the Borsuk and Nelson–Erdős–Hadwiger classical problems in combinatorial geometry is considered. The problem has to do with finding the number χ(n,a,d)
equal to the minimal number of colors needed to color an arbitrary set of diameter d in n-dimensional Euclidean space in such a way that the distance between points of the same color cannot be equal to a. Some new lower bounds for the quantity χ(n,a,d) are obtained.
Keywords:
Borsuk problem, Nelson–Erdős–Hadwiger problem, chromatic number, Stirling formula, infinite graph, Euclidean space, distribution of primes.
Citation:
A. M. Raigorodskii, M. M. Kityaev, “On a Series of Problems Related to the Borsuk and Nelson–Erdős–Hadwiger Problems”, Mat. Zametki, 84:2 (2008), 254–272; Math. Notes, 84:2 (2008), 239–255
\Bibitem{RaiKit08}
\by A.~M.~Raigorodskii, M.~M.~Kityaev
\paper On a Series of Problems Related to the Borsuk and Nelson--Erd\H os--Hadwiger Problems
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 2
\pages 254--272
\mathnet{http://mi.mathnet.ru/mzm4304}
\crossref{https://doi.org/10.4213/mzm4304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475052}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 2
\pages 239--255
\crossref{https://doi.org/10.1134/S0001434608070249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849095141}
Linking options:
https://www.mathnet.ru/eng/mzm4304
https://doi.org/10.4213/mzm4304
https://www.mathnet.ru/eng/mzm/v84/i2/p254
This publication is cited in the following 2 articles:
Andrei M. Raigorodskii, Thirty Essays on Geometric Graph Theory, 2013, 429
A. E. Guterman, V. K. Lyubimov, A. M. Raigorodskii, S. A. Usachev, “On independence numbers of distance graphs with vertices in ${-1,0,1}^n$: estimates, conjectures, and applications to the Nelson–Erdős–Hadwiger problem and the Borsuk problem”, Journal of Mathematical Sciences, 165:6 (2010), 689–709