Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 2, Pages 238–253
DOI: https://doi.org/10.4213/mzm4067
(Mi mzm4067)
 

This article is cited in 14 scientific papers (total in 14 papers)

On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium

V. P. Orlov

Voronezh State University
References:
Abstract: We consider the initial boundary-value problem for the system of equations describing the motion of a nonlinear visco-elastic medium with memory along the trajectories of the velocity field; the system in question is a generalization of the system of Navier–Stokes equations. We establish existence and uniqueness theorems for strong solutions containing higher derivatives that are square-integrable in the plane case.
Keywords: nonlinear visco-elastic medium, Navier–Stokes equations, initial boundary-value problem, existence and uniqueness theorem, regularization, Sobolev space.
Received: 14.03.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 2, Pages 224–238
DOI: https://doi.org/10.1134/S0001434608070237
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: V. P. Orlov, “On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium”, Mat. Zametki, 84:2 (2008), 238–253; Math. Notes, 84:2 (2008), 224–238
Citation in format AMSBIB
\Bibitem{Orl08}
\by V.~P.~Orlov
\paper On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 2
\pages 238--253
\mathnet{http://mi.mathnet.ru/mzm4067}
\crossref{https://doi.org/10.4213/mzm4067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475051}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 2
\pages 224--238
\crossref{https://doi.org/10.1134/S0001434608070237}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849139145}
Linking options:
  • https://www.mathnet.ru/eng/mzm4067
  • https://doi.org/10.4213/mzm4067
  • https://www.mathnet.ru/eng/mzm/v84/i2/p238
  • This publication is cited in the following 14 articles:
    1. V. G. Zvyagin, V. P. Orlov, “On weak solvability of fractional models of viscoelastic high order fluid”, Izv. Math., 88:1 (2024), 54–76  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the Weak Solvability of High-order Viscoelastic Fluid Dynamics Model”, Lobachevskii J Math, 45:4 (2024), 1524  crossref
    3. E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421  crossref
    4. Zvyagin V., Orlov V., “On Strong Solutions of Fractional Nonlinear Viscoelastic Model of Voigt Type”, Math. Meth. Appl. Sci., 44:15 (2021), 11768–11782  crossref  mathscinet  isi
    5. Zvyagin V.G., Orlov V.P., “Weak Solvability of One Viscoelastic Fractional Dynamics Model of Continuum With Memory”, J. Math. Fluid Mech., 23:1 (2021), 9  crossref  mathscinet  isi  scopus
    6. Plokhaya V E., “On Small Motions of Hydrodynamic Systems Containing a Viscoelastic Fluid”, Lobachevskii J. Math., 42:5, SI (2021), 996–1013  crossref  mathscinet  isi
    7. V. G. Zvyagin, V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity”, Comput. Math. Math. Phys., 60:11 (2020), 1872–1888  mathnet  crossref  crossref  isi  elib
    8. V. G. Zvyagin, V. P. Orlov, “On strong solutions of a fractional nonlinear viscoelastic Voigt-type model”, Russian Math. (Iz. VUZ), 63:12 (2019), 96–100  mathnet  crossref  crossref  isi
    9. Zvyagin V.G. Orlov V.P., “Solvability of One Non-Newtonian Fluid Dynamics Model With Memory”, Nonlinear Anal.-Theory Methods Appl., 172 (2018), 73–98  crossref  mathscinet  zmath  isi  scopus
    10. Victor Zvyagin, Vladimir Orlov, AIP Conference Proceedings, 1759, 2016, 020040  crossref
    11. V. P. Orlov, M. I. Parshin, “On a problem in the dynamics of a thermoviscoelastic medium with memory”, Comput. Math. Math. Phys., 55:4 (2015), 650–665  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    12. V. P. Orlov, M. I. Parshin, “On one problem of dynamics of thermoviscoelastic medium of Oldroid type”, Russian Math. (Iz. VUZ), 58:5 (2014), 57–62  mathnet  crossref
    13. Vladimir Orlov, “On Strong Solutions of Regularized Model of a Viscoelastic Medium with Variable Boundary”, ISRN Mathematical Physics, 2012 (2012), 1  crossref
    14. V. P. Orlov, “Strong solution of certain thermoviscoelastic system”, Russian Math. (Iz. VUZ), 54:8 (2010), 41–47  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:510
    Full-text PDF :254
    References:79
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025