Abstract:
We consider the initial boundary-value problem for the system of equations describing the motion of a nonlinear visco-elastic medium with memory along the trajectories of the velocity field; the system in question is a generalization of the system of Navier–Stokes equations. We establish existence and uniqueness theorems for strong solutions containing higher derivatives that are square-integrable in the plane case.
Keywords:
nonlinear visco-elastic medium, Navier–Stokes equations, initial boundary-value problem, existence and uniqueness theorem, regularization, Sobolev space.
Citation:
V. P. Orlov, “On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium”, Mat. Zametki, 84:2 (2008), 238–253; Math. Notes, 84:2 (2008), 224–238
\Bibitem{Orl08}
\by V.~P.~Orlov
\paper On the Strong Solutions of a Regularized Model of a Nonlinear Visco-Elastic Medium
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 2
\pages 238--253
\mathnet{http://mi.mathnet.ru/mzm4067}
\crossref{https://doi.org/10.4213/mzm4067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2475051}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 2
\pages 224--238
\crossref{https://doi.org/10.1134/S0001434608070237}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258855600023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50849139145}
Linking options:
https://www.mathnet.ru/eng/mzm4067
https://doi.org/10.4213/mzm4067
https://www.mathnet.ru/eng/mzm/v84/i2/p238
This publication is cited in the following 14 articles:
V. G. Zvyagin, V. P. Orlov, “On weak solvability of fractional models of viscoelastic high order fluid”, Izv. Math., 88:1 (2024), 54–76
V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the Weak Solvability of High-order Viscoelastic Fluid Dynamics Model”, Lobachevskii J Math, 45:4 (2024), 1524
E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421
Zvyagin V., Orlov V., “On Strong Solutions of Fractional Nonlinear Viscoelastic Model of Voigt Type”, Math. Meth. Appl. Sci., 44:15 (2021), 11768–11782
Zvyagin V.G., Orlov V.P., “Weak Solvability of One Viscoelastic Fractional Dynamics Model of Continuum With Memory”, J. Math. Fluid Mech., 23:1 (2021), 9
Plokhaya V E., “On Small Motions of Hydrodynamic Systems Containing a Viscoelastic Fluid”, Lobachevskii J. Math., 42:5, SI (2021), 996–1013
V. G. Zvyagin, V. P. Orlov, “On regularity of weak solutions to a generalized Voigt model of viscoelasticity”, Comput. Math. Math. Phys., 60:11 (2020), 1872–1888
V. G. Zvyagin, V. P. Orlov, “On strong solutions of a fractional nonlinear viscoelastic Voigt-type model”, Russian Math. (Iz. VUZ), 63:12 (2019), 96–100
Zvyagin V.G. Orlov V.P., “Solvability of One Non-Newtonian Fluid Dynamics Model With Memory”, Nonlinear Anal.-Theory Methods Appl., 172 (2018), 73–98
Victor Zvyagin, Vladimir Orlov, AIP Conference Proceedings, 1759, 2016, 020040
V. P. Orlov, M. I. Parshin, “On a problem in the dynamics of a thermoviscoelastic medium with memory”, Comput. Math. Math. Phys., 55:4 (2015), 650–665
V. P. Orlov, M. I. Parshin, “On one problem of dynamics of thermoviscoelastic medium of Oldroid type”, Russian Math. (Iz. VUZ), 58:5 (2014), 57–62
Vladimir Orlov, “On Strong Solutions of Regularized Model of a Viscoelastic Medium with Variable Boundary”, ISRN Mathematical Physics, 2012 (2012), 1
V. P. Orlov, “Strong solution of certain thermoviscoelastic system”, Russian Math. (Iz. VUZ), 54:8 (2010), 41–47