Abstract:
In connection with problems of information theory, we study arithmetical progressions constructed at the points of elliptic curves over a finite field. For certain types of such curves, we establish the distribution of the quadratic residues at the x-coordinates of the sequence of points corresponding to progressions if the elliptic curves is defined over a simple field. A description of the set of all progressions on elliptic curves over a finite field is also given.
Keywords:
Weierstrass normal form, elliptic curve, arithmetical progression, finite field, generator of pseudorandom numbers, Sylow subgroup.
Citation:
V. E. Tarakanov, “Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field”, Mat. Zametki, 82:6 (2007), 926–933; Math. Notes, 82:6 (2007), 836–842
\Bibitem{Tar07}
\by V.~E.~Tarakanov
\paper Some Remarks on Arithmetical Properties of Recursive Sequences on Elliptic Curves over a Finite Field
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 6
\pages 926--933
\mathnet{http://mi.mathnet.ru/mzm4192}
\crossref{https://doi.org/10.4213/mzm4192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399972}
\zmath{https://zbmath.org/?q=an:1161.11018}
\elib{https://elibrary.ru/item.asp?id=9901596}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 6
\pages 836--842
\crossref{https://doi.org/10.1134/S0001434607110284}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349048630}
Linking options:
https://www.mathnet.ru/eng/mzm4192
https://doi.org/10.4213/mzm4192
https://www.mathnet.ru/eng/mzm/v82/i6/p926
This publication is cited in the following 2 articles:
Cherviakov N.I., Babenko M.G., Shabalina M.N., “Development of a Secure System For Distributed Data Storage and Processing in the Clouds Based on the Concept of Active Security in Rns”, Proceedings of 2017 Xx IEEE International Conference on Soft Computing and Measurements (Scm), IEEE, 2017, 558–560
Chervyakov N.I., Babenko M.G., Deryabin M.A., Kucherov N.N., Kuchukova N.N., “The EC Sequences on Points of an Elliptic Curve Realization Using Neural Networks”, Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, Advances in Intelligent Systems and Computing, 427, eds. Abraham A., WegrzynWolska K., Hassanien A., Snasel V., Alimi A., Springer-Verlag Berlin, 2016, 147–154