Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 6, Pages 934–952
DOI: https://doi.org/10.4213/mzm4181
(Mi mzm4181)
 

This article is cited in 41 scientific papers (total in 41 papers)

Orthogonal Wavelets on Direct Products of Cyclic Groups

Yu. A. Farkov

Russian State Geological Prospecting University
References:
Abstract: We describe a method for constructing compactly supported orthogonal wavelets on a locally compact Abelian group $G$ which is the weak direct product of a countable set of cyclic groups of $p$th order. For all integers $p,n\ge 2$, we establish necessary and sufficient conditions under which the solutions of the corresponding scaling equations with $p^n$ numerical coefficients generate multiresolution analyses in $L^2(G)$. It is noted that the coefficients of these scaling equations can be calculated from the given values of $p^n$ parameters using the discrete Vilenkin–Chrestenson transform. Besides, we obtain conditions under which a compactly supported solution of the scaling equation in $L^2(G)$ is stable and has a linearly independent system of “integer” shifts. We present several examples illustrating these results.
Keywords: orthogonal wavelets, multiresolution analysis, scaling equation, locally compact Abelian group, cyclic group, Walsh function, Haar measure, Borel set, blocked set of a mask.
Received: 18.10.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 6, Pages 843–859
DOI: https://doi.org/10.1134/S0001434607110296
Bibliographic databases:
UDC: 517.986.62
Language: Russian
Citation: Yu. A. Farkov, “Orthogonal Wavelets on Direct Products of Cyclic Groups”, Mat. Zametki, 82:6 (2007), 934–952; Math. Notes, 82:6 (2007), 843–859
Citation in format AMSBIB
\Bibitem{Far07}
\by Yu.~A.~Farkov
\paper Orthogonal Wavelets on Direct Products of Cyclic Groups
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 6
\pages 934--952
\mathnet{http://mi.mathnet.ru/mzm4181}
\crossref{https://doi.org/10.4213/mzm4181}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399973}
\zmath{https://zbmath.org/?q=an:1142.42015}
\elib{https://elibrary.ru/item.asp?id=9901597}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 6
\pages 843--859
\crossref{https://doi.org/10.1134/S0001434607110296}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700029}
\elib{https://elibrary.ru/item.asp?id=13534304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349053280}
Linking options:
  • https://www.mathnet.ru/eng/mzm4181
  • https://doi.org/10.4213/mzm4181
  • https://www.mathnet.ru/eng/mzm/v82/i6/p934
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:681
    Full-text PDF :272
    References:77
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024