Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 3, Pages 360–371
DOI: https://doi.org/10.4213/mzm40
(Mi mzm40)
 

This article is cited in 35 scientific papers (total in 35 papers)

On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains

V. V. Grushin

Moscow State Institute of Electronics and Mathematics
References:
Abstract: In this paper, sufficient conditions for the existence of eigenvalues of a finitely perturbed Laplace operator in an infinite cylindrical domain and their asymptotics in the small parameter are given. Similar questions for tubes, i.e., deformed cylinders, are also considered.
Received: 26.05.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 3, Pages 331–340
DOI: https://doi.org/10.1023/B:MATN.0000023312.41107.72
Bibliographic databases:
UDC: 517.958 517.95
Language: Russian
Citation: V. V. Grushin, “On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains”, Mat. Zametki, 75:3 (2004), 360–371; Math. Notes, 75:3 (2004), 331–340
Citation in format AMSBIB
\Bibitem{Gru04}
\by V.~V.~Grushin
\paper On the Eigenvalues of Finitely Perturbed Laplace Operators in Infinite Cylindrical Domains
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 3
\pages 360--371
\mathnet{http://mi.mathnet.ru/mzm40}
\crossref{https://doi.org/10.4213/mzm40}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068799}
\zmath{https://zbmath.org/?q=an:1111.35022}
\elib{https://elibrary.ru/item.asp?id=14430488}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 3
\pages 331--340
\crossref{https://doi.org/10.1023/B:MATN.0000023312.41107.72}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900004}
Linking options:
  • https://www.mathnet.ru/eng/mzm40
  • https://doi.org/10.4213/mzm40
  • https://www.mathnet.ru/eng/mzm/v75/i3/p360
  • This publication is cited in the following 35 articles:
    1. S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    2. S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Bruneau V. Miranda P. Parra D. Popoff N., “Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes: Twisting Versus Bending”, Ann. Henri Poincare, 21:2 (2020), 377–403  crossref  mathscinet  isi  scopus
    4. Bagmutov A.S., Popov I.Y., “Window-Coupled Nanolayers: Window Shape Influence on One-Particle and Two-Particle Eigenstates”, Nanosyst.-Phys. Chem. Math., 11:6 (2020), 636–641  crossref  isi  scopus
    5. Barseghyan D., Khrabustovskyi A., “Spectral Estimates For Dirichlet Laplacian on Tubes With Exploding Twisting Velocity”, Oper. Matrices, 13:2 (2019), 311–322  crossref  mathscinet  isi  scopus
    6. Cardone G., Durante T., Nazarov S.A., “Embedded Eigenvalues of the Neumann Problem in a Strip With a Box-Shaped Perturbation”, J. Math. Pures Appl., 112 (2018), 1–40  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Piat V.Ch., Nazarov S.A., Taskinen J., “Embedded Eigenvalues Forwater-Waves in Athree-Dimensional Channel With Athin Screen”, Q. J. Mech. Appl. Math., 71:2 (2018), 187–220  crossref  mathscinet  isi  scopus  scopus
    8. S. A. Nazarov, “Transmission of waves through a small aperture in the cross-wall in an acoustic waveguide”, Siberian Math. J., 59:1 (2018), 85–101  mathnet  crossref  crossref  isi  elib
    9. Bruneau V., Miranda P., Popoff N., “Resonances Near Thresholds in Slightly Twisted Waveguides”, Proc. Amer. Math. Soc., 146:11 (2018), 4801–4812  crossref  mathscinet  zmath  isi  scopus
    10. S. A. Nazarov, “Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations”, J. Math. Sci. (N. Y.), 243:5 (2019), 746–773  mathnet  crossref
    11. S. A. Nazarov, “Various manifestations of Wood anomalies in locally distorted quantum waveguides”, Comput. Math. Math. Phys., 58:11 (2018), 1838–1855  mathnet  crossref  crossref  isi  elib
    12. S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410  mathnet  crossref  mathscinet  isi  elib
    13. Bikmetov A.R. Gadyl'shin R.R., “On local perturbations of waveguides”, Russ. J. Math. Phys., 23:1 (2016), 1–18  crossref  mathscinet  zmath  isi  scopus
    14. S. A. Nazarov, “Transmission Conditions in One-Dimensional Model of a Rectangular Lattice of Thin Quantum Waveguides”, J Math Sci, 219:6 (2016), 994  crossref
    15. S. A. Nazarov, “Scattering anomalies in a resonator above the thresholds of the continuous spectrum”, Sb. Math., 206:6 (2015), 782–813  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Nazarov S.A., “Near-threshold effects of the scattering of waves in a distorted elastic two-dimensional waveguide”, Pmm-J. Appl. Math. Mech., 79:4 (2015), 374–387  crossref  mathscinet  isi  scopus
    17. Exner P. Kovarik H., Quantum Waveguides, Theoretical and Mathematical Physics, Springer-Verlag Berlin, 2015, 1–382  crossref  mathscinet  isi
    18. Briet Ph., Kovarik H., Raikov G., “Scattering in Twisted Waveguides”, J. Funct. Anal., 266:1 (2014), 1–35  crossref  mathscinet  zmath  isi  scopus  scopus
    19. S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder”, Comput. Math. Math. Phys., 54:8 (2014), 1261–1279  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. Cardone G., Nazarov S.A., Ruotsalainen K., “Bound States of a Converging Quantum Waveguide”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 47:1 (2013), 305–315  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:702
    Full-text PDF :243
    References:138
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025