1. S. A. Nazarov, “Enforced Stability of a Simple Eigenvalue in the Continuous Spectrum of a Waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  2. S. A. Nazarov, “Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide”, Acoust. Phys., 59:3 (2013), 272  crossref
  3. S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  4. J. H. Videman, V. Chiado' Piat, S. A. Nazarov, “Asymptotics of frequency of a surface wave trapped by a slightly inclined barrier in a liquid layer”, J. Math. Sci. (N. Y.), 185:4 (2012), 536–553  mathnet  crossref  mathscinet
  5. Borisov D. Cardone G., “Planar Waveguide with “Twisted” Boundary Conditions: Discrete Spectrum”, J. Math. Phys., 52:12 (2011), 123513  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
  6. V. V. Grushin, “Asymptotic Behavior of Eigenvalues of the Laplace Operator in Thin Infinite Tubes”, Math. Notes, 85:5 (2009), 661–673  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  7. V. V. Grushin, “Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator in Thin Closed Tubes”, Math. Notes, 83:4 (2008), 463–477  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  8. Ekholm T., Kovařík H., Krejčiřík D., “A Hardy inequality in twisted waveguides”, Arch. Ration. Mech. Anal., 188:2 (2008), 245–264  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  9. Krejcirik D., “Twisting Versus Bending in Quantum Waveguides”, Analysis on Graphs and its Applications, Proceedings of Symposia in Pure Mathematics, 77, ed. Exner P. Keating J. Kuchment P. Sunada T. Teplyaev A., Amer Mathematical Soc, 2008, 617–636  crossref  mathscinet  zmath  isi
  10. V. V. Grushin, “Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions”, Math. Notes, 81:3 (2007), 291–296  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  11. Bruening J., Dobrokhotov S., Sekerzh-Zenkovich S., Tudorovskiy T., “Spectral series of the Schrodinger operator in thin waveguides with periodic structure. I. Adiabatic approximation and semiclassical asymptotics in the 2D case”, Russ. J. Math. Phys., 13:4 (2006), 380–396  crossref  mathscinet  zmath  adsnasa  isi  scopus
  12. V. V. Grushin, “Asymptotic Behavior of the Eigenvalues of the Schrödinger Operator with Transversal Potential in a Weakly Curved Infinite Cylinder”, Math. Notes, 77:5 (2005), 606–613  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  13. R. R. Gadyl'shin, “Local Perturbations of Quantum Waveguides”, Theoret. and Math. Phys., 145:3 (2005), 1678–1690  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  14. Planida M. Yu., “Singular perturbation of the Dirichlet problem in an infinite cylinder”, Dokl. Math., 71:3 (2005), 466–469  mathscinet  isi  elib
  15. V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations”, Theoret. and Math. Phys., 141:2 (2004), 1562–1592  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
Previous
1
2