Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 1, Pages 24–39
DOI: https://doi.org/10.4213/mzm4
(Mi mzm4)
 

This article is cited in 21 scientific papers (total in 21 papers)

On the Asymptotic Behavior of the Distributions of First-Passage Times, I

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In this paper, the asymptotic behavior of and estimates for the distribution of first-passage times for a random walk are obtained in the cases of fixed and increasing levels. In the first part of the paper, the case of zero level is studied.
Received: 17.05.2002
Revised: 01.04.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 1, Pages 23–37
DOI: https://doi.org/10.1023/B:MATN.0000015019.37128.cb
Bibliographic databases:
UDC: 519.214
Language: Russian
Citation: A. A. Borovkov, “On the Asymptotic Behavior of the Distributions of First-Passage Times, I”, Mat. Zametki, 75:1 (2004), 24–39; Math. Notes, 75:1 (2004), 23–37
Citation in format AMSBIB
\Bibitem{Bor04}
\by A.~A.~Borovkov
\paper On the Asymptotic Behavior of the Distributions of First-Passage Times, I
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 1
\pages 24--39
\mathnet{http://mi.mathnet.ru/mzm4}
\crossref{https://doi.org/10.4213/mzm4}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2053147}
\zmath{https://zbmath.org/?q=an:1108.60039}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 1
\pages 23--37
\crossref{https://doi.org/10.1023/B:MATN.0000015019.37128.cb}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100004}
Linking options:
  • https://www.mathnet.ru/eng/mzm4
  • https://doi.org/10.4213/mzm4
  • https://www.mathnet.ru/eng/mzm/v75/i1/p24
    Cycle of papers
    This publication is cited in the following 21 articles:
    1. Ion Grama, Hui Xiao, “Conditioned local limit theorems for random walks on the real line”, Ann. Inst. H. Poincaré Probab. Statist., 61:1 (2025)  crossref
    2. ION GRAMA, JEAN-FRANÇOIS QUINT, HUI XIAO, “Conditioned limit theorems for hyperbolic dynamical systems”, Ergod. Th. Dynam. Sys., 44:1 (2024), 50  crossref
    3. Grama I. Lauvergnat R. Le Page E., “Conditioned Local Limit Theorems For Random Walks Defined on Finite Markov Chains”, Probab. Theory Relat. Field, 176:1-2 (2020), 669–735  crossref  mathscinet  isi
    4. Berger Q., “Notes on Random Walks in the Cauchy Domain of Attraction”, Probab. Theory Relat. Field, 175:1-2 (2019), 1–44  crossref  mathscinet  isi  scopus
    5. Grama I. Lauvergnat R. Le Page E., “Limit Theorems For Markov Walks Conditioned to Stay Positive Under a Spectral Gap Assumption”, Ann. Probab., 46:4 (2018), 1807–1877  crossref  mathscinet  zmath  isi  scopus
    6. Ion Grama, Ronan Lauvergnat, Émile Le Page, “Limit theorems for affine Markov walks conditioned to stay positive”, Ann. Inst. H. Poincaré Probab. Statist., 54:1 (2018)  crossref
    7. R. T. Aliev, T. A. Khaniev, “On the Limiting Behavior of the Characteristic Function of the Ergodic Distribution of the Semi-Markov Walk with Two Boundaries”, Math. Notes, 102:4 (2017), 444–454  mathnet  crossref  crossref  mathscinet  isi  elib
    8. Grama I. Le Page E. Peigne M., “Conditioned Limit Theorems For Products of Random Matrices”, Probab. Theory Relat. Field, 168:3-4 (2017), 601–639  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Ion Grama, Springer Proceedings in Mathematics & Statistics, 208, Modern Problems of Stochastic Analysis and Statistics, 2017, 93  crossref
    10. Ion Grama, Émile Le Page, Springer Proceedings in Mathematics & Statistics, 208, Modern Problems of Stochastic Analysis and Statistics, 2017, 103  crossref
    11. Aurzada F. Kramm T., “The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Lévy Processes”, J. Theor. Probab., 29:3 (2016), 737–760  crossref  mathscinet  zmath  isi  elib  scopus
    12. Aurzada F. Kramm T. Savov M., “First Passage Times of Levy Processes Over a One-Sided Moving Boundary”, Markov Process. Relat. Fields, 21:1 (2015), 1–38  mathscinet  zmath  isi  elib
    13. I. Unver, Ya. S. Tundzh, E. Ibaev, “Laplace-Stieltjes transform of the distribution of the first moment of crossing the level a(a > 0) by a semi-Markovian random walk with positive drift and negative jumps”, Aut. Control Comp. Sci., 48:3 (2014), 144  crossref
    14. Denisov D. Shneer V., “Asymptotics for the First Passage Times of Levy Processes and Random Walks”, J. Appl. Probab., 50:1 (2013), 64–84  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. Denis Denisov, Vsevolod Shneer, “Asymptotics for the First Passage Times of Lévy Processes and Random Walks”, J. Appl. Probab., 50:01 (2013), 64  crossref
    16. A. A. Mogul'skii, “Local limit theorem for the first crossing time of a fixed level by a random walk”, Siberian Adv. Math., 20:3 (2010), 191–200  mathnet  crossref  mathscinet  elib  elib
    17. Denisov, D, “Local asymptotics of the cycle maximum of a heavy-tailed random walk”, Advances in Applied Probability, 39:1 (2007), 221  crossref  mathscinet  zmath  isi  scopus  scopus
    18. Denis Denisov, Vsevolod Shneer, “Local asymptotics of the cycle maximum of a heavy-tailed random walk”, Adv. Appl. Probab., 39:01 (2007), 221  crossref
    19. A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101  mathnet  crossref  mathscinet  zmath  isi
    20. A. A. Mogul'skii, B. A. Rogozin, “A Local Theorem for the First Hitting Time of a Fixed Level by a Random Walk”, Siberian Adv. Math., 15:3 (2005), 1–27  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:761
    Full-text PDF :296
    References:116
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025