Abstract:
In this paper, the asymptotic behavior of and estimates for the distribution of first-passage times for a random walk are obtained in the cases of fixed and increasing levels. In the first part of the paper, the case of zero level is studied.
Citation:
A. A. Borovkov, “On the Asymptotic Behavior of the Distributions of First-Passage Times, I”, Mat. Zametki, 75:1 (2004), 24–39; Math. Notes, 75:1 (2004), 23–37
This publication is cited in the following 21 articles:
Ion Grama, Hui Xiao, “Conditioned local limit theorems for random walks on the real line”, Ann. Inst. H. Poincaré Probab. Statist., 61:1 (2025)
ION GRAMA, JEAN-FRANÇOIS QUINT, HUI XIAO, “Conditioned limit theorems for hyperbolic dynamical systems”, Ergod. Th. Dynam. Sys., 44:1 (2024), 50
Grama I. Lauvergnat R. Le Page E., “Conditioned Local Limit Theorems For Random Walks Defined on Finite Markov Chains”, Probab. Theory Relat. Field, 176:1-2 (2020), 669–735
Berger Q., “Notes on Random Walks in the Cauchy Domain of Attraction”, Probab. Theory Relat. Field, 175:1-2 (2019), 1–44
Grama I. Lauvergnat R. Le Page E., “Limit Theorems For Markov Walks Conditioned to Stay Positive Under a Spectral Gap Assumption”, Ann. Probab., 46:4 (2018), 1807–1877
Ion Grama, Ronan Lauvergnat, Émile Le Page, “Limit theorems for affine Markov walks conditioned to stay positive”, Ann. Inst. H. Poincaré Probab. Statist., 54:1 (2018)
R. T. Aliev, T. A. Khaniev, “On the Limiting Behavior of the Characteristic Function of the Ergodic Distribution of the Semi-Markov Walk with Two Boundaries”, Math. Notes, 102:4 (2017), 444–454
Grama I. Le Page E. Peigne M., “Conditioned Limit Theorems For Products of Random Matrices”, Probab. Theory Relat. Field, 168:3-4 (2017), 601–639
Ion Grama, Springer Proceedings in Mathematics & Statistics, 208, Modern Problems of Stochastic Analysis and Statistics, 2017, 93
Ion Grama, Émile Le Page, Springer Proceedings in Mathematics & Statistics, 208, Modern Problems of Stochastic Analysis and Statistics, 2017, 103
Aurzada F. Kramm T., “The First Passage Time Problem Over a Moving Boundary for Asymptotically Stable Lévy Processes”, J. Theor. Probab., 29:3 (2016), 737–760
Aurzada F. Kramm T. Savov M., “First Passage Times of Levy Processes Over a One-Sided Moving Boundary”, Markov Process. Relat. Fields, 21:1 (2015), 1–38
I. Unver, Ya. S. Tundzh, E. Ibaev, “Laplace-Stieltjes transform of the distribution of the first moment of crossing the level a(a > 0) by a semi-Markovian random walk with positive drift and negative jumps”, Aut. Control Comp. Sci., 48:3 (2014), 144
Denisov D. Shneer V., “Asymptotics for the First Passage Times of Levy Processes and Random Walks”, J. Appl. Probab., 50:1 (2013), 64–84
Denis Denisov, Vsevolod Shneer, “Asymptotics for the First Passage Times of Lévy Processes and Random Walks”, J. Appl. Probab., 50:01 (2013), 64
A. A. Mogul'skii, “Local limit theorem for the first crossing time of a fixed level by a random walk”, Siberian Adv. Math., 20:3 (2010), 191–200
Denisov, D, “Local asymptotics of the cycle maximum of a heavy-tailed random walk”, Advances in Applied Probability, 39:1 (2007), 221
Denis Denisov, Vsevolod Shneer, “Local asymptotics of the cycle maximum of a heavy-tailed random walk”, Adv. Appl. Probab., 39:01 (2007), 221
A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101
A. A. Mogul'skii, B. A. Rogozin, “A Local Theorem for the First Hitting Time of a Fixed Level by a Random Walk”, Siberian Adv. Math., 15:3 (2005), 1–27