Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 2, Pages 275–287
DOI: https://doi.org/10.4213/mzm8805
(Mi mzm8805)
 

This article is cited in 2 scientific papers (total in 2 papers)

Finitely Smooth Local Equivalence of Autonomous Systems with One Zero Root

V. S. Samovol

State University – Higher School of Economics
Full-text PDF (437 kB) Citations (2)
References:
Abstract: In this paper, in a neighborhood of a singular point, we consider autonomous systems of ordinary differential equations such that the matrix of their linear part has one zero eigenvalue, while the other eigenvalues lie outside the imaginary axis. We prove that the problem of finitely smooth equivalence can be solved for such systems by using finite segments of the Taylor series of their right-hand sides.
Keywords: autonomous system, ordinary differential equations, finitely smooth equivalence, singular point, zero eigenvalue, Taylor series, normal form, $N$-jet of a function.
Received: 17.11.2008
Revised: 26.11.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 2, Pages 251–261
DOI: https://doi.org/10.1134/S0001434610070230
Bibliographic databases:
Document Type: Article
UDC: 517.91
Language: Russian
Citation: V. S. Samovol, “Finitely Smooth Local Equivalence of Autonomous Systems with One Zero Root”, Mat. Zametki, 88:2 (2010), 275–287; Math. Notes, 88:2 (2010), 251–261
Citation in format AMSBIB
\Bibitem{Sam10}
\by V.~S.~Samovol
\paper Finitely Smooth Local Equivalence of Autonomous Systems with One Zero Root
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 2
\pages 275--287
\mathnet{http://mi.mathnet.ru/mzm8805}
\crossref{https://doi.org/10.4213/mzm8805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867054}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 2
\pages 251--261
\crossref{https://doi.org/10.1134/S0001434610070230}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284088200023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956487741}
Linking options:
  • https://www.mathnet.ru/eng/mzm8805
  • https://doi.org/10.4213/mzm8805
  • https://www.mathnet.ru/eng/mzm/v88/i2/p275
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024