Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 3, Pages 330–341
DOI: https://doi.org/10.4213/mzm3891
(Mi mzm3891)
 

This article is cited in 1 scientific paper (total in 1 paper)

Sequences of Composition Operators in Spaces of Functions of Bounded ΦΦ-Variation

O. E. Galkin

N. I. Lobachevski State University of Nizhni Novgorod
Full-text PDF (496 kB) Citations (1)
References:
Abstract: The main results of the paper are contained in Theorems 1 and 2. Theorem 1 presents necessary and sufficient conditions for a sequence of functions hn:c,da,bhn:c,da,b, n=1,2,n=1,2,, to have bounded sequences of ΨΨ-variations {VΨ(c,d;fhn)}n=1{VΨ(c,d;fhn)}n=1 evaluated for the compositions of an arbitrary function f:a,bR with finite Φ-variation and the functions hn. In Theorem ???, the same is done for a sequence of functions hn:RR, n=1,2,, and the sequence of Ψ-variations {VΨ(a,b;hnf)}n=1.
Keywords: composition operator, φ-function, Φ-variation, modulus of continuity, Lipschitz function, Hölder property.
Received: 26.06.2007
English version:
Mathematical Notes, 2009, Volume 85, Issue 3, Pages 328–339
DOI: https://doi.org/10.1134/S0001434609030031
Bibliographic databases:
UDC: 517.518.24+517.518.3
Language: Russian
Citation: O. E. Galkin, “Sequences of Composition Operators in Spaces of Functions of Bounded Φ-Variation”, Mat. Zametki, 85:3 (2009), 330–341; Math. Notes, 85:3 (2009), 328–339
Citation in format AMSBIB
\Bibitem{Gal09}
\by O.~E.~Galkin
\paper Sequences of Composition Operators in Spaces of Functions of Bounded $\Phi$-Variation
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 3
\pages 330--341
\mathnet{http://mi.mathnet.ru/mzm3891}
\crossref{https://doi.org/10.4213/mzm3891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548041}
\zmath{https://zbmath.org/?q=an:1194.47025}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 3
\pages 328--339
\crossref{https://doi.org/10.1134/S0001434609030031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949181183}
Linking options:
  • https://www.mathnet.ru/eng/mzm3891
  • https://doi.org/10.4213/mzm3891
  • https://www.mathnet.ru/eng/mzm/v85/i3/p330
  • This publication is cited in the following 1 articles:
    1. H. Li, T. Ma, “Products of Composition Operators and Integral-Type Operators from Zygmund-Type Spaces to $Q_{K}$ Spaces”, Math. Notes, 99:2 (2016), 261–271  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :207
    References:57
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025