Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 3, Pages 323–329
DOI: https://doi.org/10.4213/mzm6633
(Mi mzm6633)
 

This article is cited in 18 scientific papers (total in 18 papers)

Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$

S. B. Vakarchuka, V. I. Zabutnayab

a Ukrainian Academy of Customs
b Dnepropetrovsk National University
References:
Abstract: In the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$, we construct best linear approximation methods for classes of analytic functions $W^rH_q\Phi$, $r\in\mathbb N$, in the unit disk (studied by L. V. Taikov) whose averaged second-order moduli of continuity of the angular boundary values of the $r$th derivatives are majorized by a given function $\Phi$ satisfying certain constraints.
Keywords: linear approximation of functions, analytic function, Hardy spaces $H_{q,\rho}$, modulus of continuity, $n$-width (Bernstein, Kolmogorov, Gelfand), algebraic polynomial, Minkowski's inequality.
Received: 18.12.2001
Revised: 08.10.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 3, Pages 322–327
DOI: https://doi.org/10.1134/S000143460903002X
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, V. I. Zabutnaya, “Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$”, Mat. Zametki, 85:3 (2009), 323–329; Math. Notes, 85:3 (2009), 322–327
Citation in format AMSBIB
\Bibitem{VakZab09}
\by S.~B.~Vakarchuk, V.~I.~Zabutnaya
\paper Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 3
\pages 323--329
\mathnet{http://mi.mathnet.ru/mzm6633}
\crossref{https://doi.org/10.4213/mzm6633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2548040}
\zmath{https://zbmath.org/?q=an:1177.30073}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 3
\pages 322--327
\crossref{https://doi.org/10.1134/S000143460903002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949144298}
Linking options:
  • https://www.mathnet.ru/eng/mzm6633
  • https://doi.org/10.4213/mzm6633
  • https://www.mathnet.ru/eng/mzm/v85/i3/p323
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024