Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 84, Issue 4, Pages 567–576
DOI: https://doi.org/10.4213/mzm3866
(Mi mzm3866)
 

This article is cited in 22 scientific papers (total in 22 papers)

Invariant Weighted Algebras $\mathscr L_p^w(G)$

Yu. N. Kuznetsova

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Abstract: The paper is devoted to weighted spaces $\mathscr L_p^w(G)$ on a locally compact group $G$. If $w$ is a positive measurable function on $G$, then the space $\mathscr L_p^w(G)$, $p\ge1$, is defined by the relation $\mathscr L_p^w(G)=\{f:fw\in\mathscr L_p(G)\}$. The weights $w$ for which these spaces are algebras with respect to the ordinary convolution are treated. It is shown that, for $p>1$, every sigma-compact group admits a weight defining such an algebra. The following criterion is proved (which was known earlier for special cases only): a space $\mathscr L_1^w(G)$ is an algebra if and only if the function $w$ is semimultiplicative. It is proved that the invariance of the space $\mathscr L_p^w(G)$ with respect to translations is a sufficient condition for the existence of an approximate identity in the algebra $\mathscr L_p^w(G)$. It is also shown that, for a nondiscrete group $G$ and for $p>1$, no approximate identity of an invariant weighted algebra can be bounded.
Keywords: locally compact group, weighted space, weighted algebra, approximate identity, bounded approximate identity, $\sigma$-compact group, measurable function.
Received: 30.03.2007
English version:
Mathematical Notes, 2008, Volume 84, Issue 4, Pages 529–537
DOI: https://doi.org/10.1134/S0001434608090241
Bibliographic databases:
UDC: 517.986
Language: Russian
Citation: Yu. N. Kuznetsova, “Invariant Weighted Algebras $\mathscr L_p^w(G)$”, Mat. Zametki, 84:4 (2008), 567–576; Math. Notes, 84:4 (2008), 529–537
Citation in format AMSBIB
\Bibitem{Kuz08}
\by Yu.~N.~Kuznetsova
\paper Invariant Weighted Algebras $\mathscr L_p^w(G)$
\jour Mat. Zametki
\yr 2008
\vol 84
\issue 4
\pages 567--576
\mathnet{http://mi.mathnet.ru/mzm3866}
\crossref{https://doi.org/10.4213/mzm3866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485196}
\zmath{https://zbmath.org/?q=an:1162.43001}
\transl
\jour Math. Notes
\yr 2008
\vol 84
\issue 4
\pages 529--537
\crossref{https://doi.org/10.1134/S0001434608090241}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260516700024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-55149114270}
Linking options:
  • https://www.mathnet.ru/eng/mzm3866
  • https://doi.org/10.4213/mzm3866
  • https://www.mathnet.ru/eng/mzm/v84/i4/p567
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :204
    References:42
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024