Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 1, Pages 75–83
DOI: https://doi.org/10.4213/mzm3755
(Mi mzm3755)
 

This article is cited in 7 scientific papers (total in 7 papers)

Expression for the Number of Eigenvalues of a Friedrichs Model

M. I. Muminov

A. Navoi Samarkand State University
Full-text PDF (450 kB) Citations (7)
References:
Abstract: We consider the self-adjoint operator of a generalized Friedrichs model whose essential spectrum may contain lacunas. We obtain a formula for the number of eigenvalues lying on an arbitrary interval outside the essential spectrum of this operator. We find a sufficient condition for the discrete spectrum to be finite. Applying the formula for the number of eigenvalues, we show that there exist an infinite number of eigenvalues on the lacuna for a particular Friedrichs model and obtain the asymptotics for the number of eigenvalues.
Keywords: Friedrichs model, self-adjoint operator, essential spectrum of an operator, lacuna, asymptotics for the number of eigenvalues, Weyl's inequality.
Received: 11.01.2006
Revised: 12.02.2007
English version:
Mathematical Notes, 2007, Volume 82, Issue 1, Pages 67–74
DOI: https://doi.org/10.1134/S0001434607070097
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. I. Muminov, “Expression for the Number of Eigenvalues of a Friedrichs Model”, Mat. Zametki, 82:1 (2007), 75–83; Math. Notes, 82:1 (2007), 67–74
Citation in format AMSBIB
\Bibitem{Mum07}
\by M.~I.~Muminov
\paper Expression for the Number of Eigenvalues of a Friedrichs Model
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 1
\pages 75--83
\mathnet{http://mi.mathnet.ru/mzm3755}
\crossref{https://doi.org/10.4213/mzm3755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374885}
\elib{https://elibrary.ru/item.asp?id=9518305}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 1
\pages 67--74
\crossref{https://doi.org/10.1134/S0001434607070097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249410700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58649090258}
Linking options:
  • https://www.mathnet.ru/eng/mzm3755
  • https://doi.org/10.4213/mzm3755
  • https://www.mathnet.ru/eng/mzm/v82/i1/p75
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:779
    Full-text PDF :239
    References:76
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024